
Advanced Design System 2011.01 - Using Circuit Simulators

1

Advanced Design System 2011.01

Feburary 2011
Using Circuit Simulators

Advanced Design System 2011.01 - Using Circuit Simulators

2

© Agilent Technologies, Inc. 2000-2011
5301 Stevens Creek Blvd., Santa Clara, CA 95052 USA
No part of this documentation may be reproduced in any form or by any means (including
electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Agilent Technologies, Inc. as governed by United
States and international copyright laws.

Acknowledgments
Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other
countries. Mentor products and processes are registered trademarks of Mentor Graphics
Corporation. * Calibre is a trademark of Mentor Graphics Corporation in the US and other
countries. "Microsoft®, Windows®, MS Windows®, Windows NT®, Windows 2000® and
Windows Internet Explorer® are U.S. registered trademarks of Microsoft Corporation.
Pentium® is a U.S. registered trademark of Intel Corporation. PostScript® and Acrobat®
are trademarks of Adobe Systems Incorporated. UNIX® is a registered trademark of the
Open Group. Oracle and Java and registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners. SystemC® is a registered
trademark of Open SystemC Initiative, Inc. in the United States and other countries and is
used with permission. MATLAB® is a U.S. registered trademark of The Math Works, Inc..
HiSIM2 source code, and all copyrights, trade secrets or other intellectual property rights
in and to the source code in its entirety, is owned by Hiroshima University and STARC.
FLEXlm is a trademark of Globetrotter Software, Incorporated. Layout Boolean Engine by
Klaas Holwerda, v1.7 http://www.xs4all.nl/~kholwerd/bool.html . FreeType Project,
Copyright (c) 1996-1999 by David Turner, Robert Wilhelm, and Werner Lemberg.
QuestAgent search engine (c) 2000-2002, JObjects. Motif is a trademark of the Open
Software Foundation. Netscape is a trademark of Netscape Communications Corporation.
Netscape Portable Runtime (NSPR), Copyright (c) 1998-2003 The Mozilla Organization. A
copy of the Mozilla Public License is at http://www.mozilla.org/MPL/ . FFTW, The Fastest
Fourier Transform in the West, Copyright (c) 1997-1999 Massachusetts Institute of
Technology. All rights reserved.

The following third-party libraries are used by the NlogN Momentum solver:

"This program includes Metis 4.0, Copyright © 1998, Regents of the University of
Minnesota", http://www.cs.umn.edu/~metis , METIS was written by George Karypis
(karypis@cs.umn.edu).

Intel@ Math Kernel Library, http://www.intel.com/software/products/mkl

SuperLU_MT version 2.0 - Copyright © 2003, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from U.S. Dept. of Energy). All rights reserved. SuperLU Disclaimer: THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7-zip - 7-Zip Copyright: Copyright (C) 1999-2009 Igor Pavlov. Licenses for files are:
7z.dll: GNU LGPL + unRAR restriction, All other files: GNU LGPL. 7-zip License: This library
is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This library is distributed
in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. You should have received a copy of the
GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
unRAR copyright: The decompression engine for RAR archives was developed using source
code of unRAR program.All copyrights to original unRAR code are owned by Alexander
Roshal. unRAR License: The unRAR sources cannot be used to re-create the RAR
compression algorithm, which is proprietary. Distribution of modified unRAR sources in
separate form or as a part of other software is permitted, provided that it is clearly stated

http://www.xs4all.nl/~kholwerd/bool.html
http://www.xs4all.nl/~kholwerd/bool.html
http://www.mozilla.org/MPL/
http://www.mozilla.org/MPL/
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl

Advanced Design System 2011.01 - Using Circuit Simulators

3

in the documentation and source comments that the code may not be used to develop a
RAR (WinRAR) compatible archiver. 7-zip Availability: http://www.7-zip.org/

AMD Version 2.2 - AMD Notice: The AMD code was modified. Used by permission. AMD
copyright: AMD Version 2.2, Copyright © 2007 by Timothy A. Davis, Patrick R. Amestoy,
and Iain S. Duff. All Rights Reserved. AMD License: Your use or distribution of AMD or any
modified version of AMD implies that you agree to this License. This library is free
software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. You should have received a copy of the GNU
Lesser General Public License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Permission is
hereby granted to use or copy this program under the terms of the GNU LGPL, provided
that the Copyright, this License, and the Availability of the original version is retained on
all copies.User documentation of any code that uses this code or any modified version of
this code must cite the Copyright, this License, the Availability note, and "Used by
permission." Permission to modify the code and to distribute modified code is granted,
provided the Copyright, this License, and the Availability note are retained, and a notice
that the code was modified is included. AMD Availability:
http://www.cise.ufl.edu/research/sparse/amd

UMFPACK 5.0.2 - UMFPACK Notice: The UMFPACK code was modified. Used by permission.
UMFPACK Copyright: UMFPACK Copyright © 1995-2006 by Timothy A. Davis. All Rights
Reserved. UMFPACK License: Your use or distribution of UMFPACK or any modified version
of UMFPACK implies that you agree to this License. This library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies. User documentation of any
code that uses this code or any modified version of this code must cite the Copyright, this
License, the Availability note, and "Used by permission." Permission to modify the code
and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included.
UMFPACK Availability: http://www.cise.ufl.edu/research/sparse/umfpack UMFPACK
(including versions 2.2.1 and earlier, in FORTRAN) is available at
http://www.cise.ufl.edu/research/sparse . MA38 is available in the Harwell Subroutine
Library. This version of UMFPACK includes a modified form of COLAMD Version 2.0,
originally released on Jan. 31, 2000, also available at
http://www.cise.ufl.edu/research/sparse . COLAMD V2.0 is also incorporated as a built-in
function in MATLAB version 6.1, by The MathWorks, Inc. http://www.mathworks.com .
COLAMD V1.0 appears as a column-preordering in SuperLU (SuperLU is available at
http://www.netlib.org). UMFPACK v4.0 is a built-in routine in MATLAB 6.5. UMFPACK v4.3
is a built-in routine in MATLAB 7.1.

Qt Version 4.6.3 - Qt Notice: The Qt code was modified. Used by permission. Qt copyright:
Qt Version 4.6.3, Copyright (c) 2010 by Nokia Corporation. All Rights Reserved. Qt
License: Your use or distribution of Qt or any modified version of Qt implies that you agree
to this License. This library is free software; you can redistribute it and/or modify it under
the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version. This
library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301 USA Permission is hereby granted to use or copy this
program under the terms of the GNU LGPL, provided that the Copyright, this License, and
the Availability of the original version is retained on all copies.User
documentation of any code that uses this code or any modified version of this code must
cite the Copyright, this License, the Availability note, and "Used by permission."

http://www.7-zip.org/
http://www.7-zip.org/
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/amd
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.cise.ufl.edu/research/sparse
http://www.mathworks.com
http://www.mathworks.com
http://www.netlib.org
http://www.netlib.org

Advanced Design System 2011.01 - Using Circuit Simulators

4

Permission to modify the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, and a notice that the code
was modified is included. Qt Availability: http://www.qtsoftware.com/downloads Patches
Applied to Qt can be found in the installation at:
$HPEESOF_DIR/prod/licenses/thirdparty/qt/patches. You may also contact Brian
Buchanan at Agilent Inc. at brian_buchanan@agilent.com for more information.

The HiSIM_HV source code, and all copyrights, trade secrets or other intellectual property
rights in and to the source code, is owned by Hiroshima University and/or STARC.

Errata The ADS product may contain references to "HP" or "HPEESOF" such as in file
names and directory names. The business entity formerly known as "HP EEsof" is now part
of Agilent Technologies and is known as "Agilent EEsof". To avoid broken functionality and
to maintain backward compatibility for our customers, we did not change all the names
and labels that contain "HP" or "HPEESOF" references.

Warranty The material contained in this document is provided "as is", and is subject to
being changed, without notice, in future editions. Further, to the maximum extent
permitted by applicable law, Agilent disclaims all warranties, either express or implied,
with regard to this documentation and any information contained herein, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose.
Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or of any
information contained herein. Should Agilent and the user have a separate written
agreement with warranty terms covering the material in this document that conflict with
these terms, the warranty terms in the separate agreement shall control.

Technology Licenses The hardware and/or software described in this document are
furnished under a license and may be used or copied only in accordance with the terms of
such license. Portions of this product include the SystemC software licensed under Open
Source terms, which are available for download at http://systemc.org/ . This software is
redistributed by Agilent. The Contributors of the SystemC software provide this software
"as is" and offer no warranty of any kind, express or implied, including without limitation
warranties or conditions or title and non-infringement, and implied warranties or
conditions merchantability and fitness for a particular purpose. Contributors shall not be
liable for any damages of any kind including without limitation direct, indirect, special,
incidental and consequential damages, such as lost profits. Any provisions that differ from
this disclaimer are offered by Agilent only.

Restricted Rights Legend U.S. Government Restricted Rights. Software and technical
data rights granted to the federal government include only those rights customarily
provided to end user customers. Agilent provides this customary commercial license in
Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for the Department of Defense, DFARS 252.227-7015
(Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial
Computer Software or Computer Software Documentation).

http://www.qtsoftware.com/downloads
http://www.qtsoftware.com/downloads
http://systemc.org/
http://systemc.org/

Advanced Design System 2011.01 - Using Circuit Simulators

5

 ADS Simulator Input Syntax . 7
 Setting Environment Variables . 7
 Codewording and Security . 8
 Running a Simulation from the Command Line . 8
 General Syntax . 9
 The ADS Simulator Syntax . 9
 Instance Statements . 14
 Model Statements . 14
 Subnetwork Definitions . 15
 Expression Capability . 16
 C-Preprocessor . 17
 Data Access Component . 18
 Reserved Names and Name Spaces . 19

 Parameter Sweeps and Sweep Plans . 28
 Conducting Sweeps . 28
 Basic Procedures . 29
 Recommendations and Tips . 34
 SweepPlan Controller . 35
 Parameter Sweep Controller . 35

 Using Circuit Simulators for RF System Analysis . 37
 Applicable Simulation Components . 37
 Applicable Measurements . 38
 Fundamentals of Using Circuit Simulators for System Analysis . 38
 Budget Analysis . 40
 Using IMT-Based Mixer Models in Spurious Signal Analysis . 55
 System Noise Analysis . 57

 Simulation Basics . 59
 Contents . 59

 The Simulation Process . 60
 Working with the Examples Directory . 60

 Using the Schematic Wizard . 62
 Accessing the Schematic Wizard . 62
 Schematic Wizard Start Page . 63
 Schematic Wizard Navigation . 64
 Creating a Circuit . 64
 Creating a Simulation Schematic . 66
 Correcting an S-Parameter Simulation Schematic . 69
 Correcting a Simulation Schematic with No Simulation Controller . 71

 Using the Smart Simulation Wizard . 73
 Simulation Controllers . 76

 Common Simulation Usage . 76
 Selecting Simulation Controllers . 77
 Using the Simulator Options Component . 78
 Using the Simulation Setup Dialog . 85
 Sweeping Parameters . 87
 Optimizing a Design . 88
 Working with Expressions . 88
 Running a Simulation and Controlling Simulation Data . 88
 Controlling a Simulation . 94
 Simulating from a Layout . 95
 Viewing DC Solutions . 95
 Displaying Simulation Results . 96
 Reusing Simulation Solutions . 96

 Analog/RF Simulation Computations and Convergence Criteria . 98
 Solving Nonlinear Algebraic Equations . 98
 Common Circuit Simulation Methods . 98
 Convergence Criteria . 99
 Using Continuation Methods . 100
 Preventing Convergence Problems . 100

 Working with Data Files . 102
 Supported Data Formats . 102
 Making a Data File . 104
 Saving a Data File . 104
 Using Data Files, Datasets, and Data Access Components . 104
 Reading and Writing Data Files . 105
 Examples . 107
 Touchstone SnP Format . 108
 ADS Impulse File Format . 117
 Discrete Format . 121
 Model MDIF Files . 122

Advanced Design System 2011.01 - Using Circuit Simulators

6

 PDF Format . 124
 S2PMDIF Format . 125
 P2D Format . 131
 S2D Format . 137
 IMT Format . 147
 SPW Format . 149
 TIM Format . 150
 Generic MDIF . 152
 X-parameter GMDIF Format . 154
 CITIfile Data Format . 159

 Circuit Remote Simulation . 170
 Remote Simulation with File Access . 171
 ADS Remote Simulation . 172
 LSF Remote Simulation . 175
 Sun Grid Engine Remote Simulation . 176
 Distributed Remote Simulation . 178

 An ADS Simulation Example . 184
 Placing Circuit Sources . 184
 Specifying Points for Collecting Data . 185
 Selecting a Simulation Type . 186
 Selecting a Sweep Type and Plan . 187
 Setting Simulation Options . 187
 Modifying the Simulation Setup . 187
 Starting the Simulation . 188
 Displaying Simulation Data . 188

 MATLAB Output . 191
 Matlab output structure . 191

 Preparing a Circuit for Simulation in ADS . 193
 Using Current Probes . 193
 Naming Nodes . 193
 Using NodeSet and NodeSetByName Components . 194
 Highlighting Nodes . 195
 Using Constants, Variables, and Functions . 196
 Applying Measurements . 198
 Using Simulation Templates . 200
 Using Simulation Instrument Components . 201
 Performing a Momentum Cosimulation . 202

 RefNets . 203
 RefNetTB Using an S-Parameter Test Lab . 204
 RefNetDesign - File Based Termination . 210

 S-Parameter Test Labs and Sequencer . 212
 Creating a Test Bench . 212
 S-Parameter Test Labs . 214
 Sequencer . 217
 Using Measurement Equations with a Test Lab or Sequencer . 219
 Improving Test Lab Simulation Efficiency . 220

 Dynamic Model Selection . 221
 Hierarchy Policies . 221
 Instance Specializations . 226
 Hierarchy Policies versus Instance Specialization . 227
 Hierarchy Explorer . 228
 Using Layout Views in Circuit Simulation . 230

Advanced Design System 2011.01 - Using Circuit Simulators

7

 ADS Simulator Input Syntax
 This topic provides information related to the Advanced Design System's circuit and
system simulator (hpeesofsim). While this is not an all inclusive document with regards to
hpeesofsim, the information provided here should help you accomplish tasks related to
using the simulator in your development environment. The simulator is supported on the
platforms specified in the installation documentation for your system, in the section
"Check the System Requirements".

The simulator can be run from within the design environment, as well as from a command
line. Before running the simulator, ensure that your system is ready to run the simulator
by reviewing these topics:

Setting Environment Variables
Codewording and Security
Running a Simulation from the Command Line

 Setting Environment Variables
Before running the simulator, the following environment variables must be set:

 Environment Variables Required for the ADS Simulator (hpeesofsim)

Variable PC Setting UNIX/Linux Setting

HPEESOF_DIR <ADS_install_dir> <ADS_install_dir>

COMPL_DIR %HPEESOF_DIR% $HPEESOF_DIR

These environment variables tell your system the location of the ADS shared
libraries/DLLs and device libraries. COMPL_DIR defines the location of component
libraries. The COMPL_DIR variable typically uses the same value as HPEESOF_DIR unless
the component libraries are located elsewhere. However, the majority of users should be
able to set COMPL_DIR to the same value as HPEESOF_DIR.

Note: in the following, make sure that you use the correct value of SIMARCH:

Platform Value to use for SIMARCH

32-bit
windows

win32

64-bit
windows

win32_64

32-bit linux linux_x86

64-bit linux linux_x86_64

32-bit Solaris sun58

64-bit Solaris sun58_64

To set the PC environment variables, use the following commands (note: HPEESOF_DIR
and COMPL_DIR must be set before the following is done):

set SIMARCH=win32 (Change as appropriate -- see above table)

set

PATH=%HPEESOF_DIR%\bin\%SIMARCH%;%HPEESOF_DIR%\bin;%HPEESOF_DIR%\lib\%SIMARCH%;%HPEESOF_DIR%\circu

it\lib.%SIMARCH%;%HPEESOF_DIR%\adsptolemy\lib.%SIMARCH%;%PATH%

To set the UNIX environment variables using the Korn or Bourne Shells, add the following
to your ~/.profile (note: HPEESOF_DIR and COMPL_DIR must be set before the following
is done):

export SIMARCH=linux_x86 (Change as appropriate -- see above table)

export PATH="$HPEESOF_DIR/bin/$SIMARCH:$HPEESOF_DIR/bin:$PATH"

export

LD_LIBRARY_PATH="$HPEESOF_DIR/lib/$SIMARCH:$HPEESOF_DIR/circuit/lib.$SIMARCH:$HPEESOF_DIR/adsptole

my/lib.$SIMARCH:$LD_LIBRARY_PATH"

To set the UNIX environment variables using the C Shell, add the following to your
~/.cshrc :

setenv SIMARCH linux_x86 (Change as appropriate -- see above table)

Advanced Design System 2011.01 - Using Circuit Simulators

8

setenv PATH "$HPEESOF_DIR/bin/$SIMARCH:$HPEESOF_DIR/bin:$PATH"

setenv LD_LIBRARY_PATH

"$HPEESOF_DIR/lib/$SIMARCH:$HPEESOF_DIR/circuit/lib.$SIMARCH:$HPEESOF_DIR/adsptolemy/lib.$SIMARCH:

$LD_LIBRARY_PATH"

 Codewording and Security
 The hpeesofsim simuilator is a secured program that requires, at a minimum, a license
for the E8881 Linear Simulator to run. Depending on the type of simulation, additional
licenses may be required. Also, the license file location may require defining the variable
ADS_LICENSE_FILE. For more information on codewording and security, see the topic on
setting up licenses in the installation documentation for your platform.

 Running a Simulation from the Command Line
 Besides using the design environment's user interface to run a simulation, you can also
run a simulation from a command line using the hpeesofsim command. Before using this
command, ensure your system is ready to run the simulator by reviewing these topics:

Setting Environment Variables
Codewording and Security

The simulator can be invoked using the following syntax:

hpeesofsim [-r output_rawfile_name] [netlist_inputfile_name]

A list of available options can be generated using the following command:

hpeesofsim -o

 Obtaining a netlist from ADS

Note
This section only talks about how a netlist can be obtained from ADS. You cannot perform a simulation
from the ADS GUI using a text netlist; you can only use a text netlist to perform a simulation from the
command line, which bypasses the ADS GUI.

Whenever you perform a simulation from ADS, ADS generates a netlist. This netlist can be
found in the workspace directory as the file, "netlist.log".
Alternatively, you can generate a netlist from ADS without performing a simulation, using
the ADS command line (ADS main window\Tools\Command Line). Enter the command:

de_netlist("your _design_name");

Note that the AEL command de_netlist needs that the name of the schematic be listed
between quotes, inside parenthesis and with a semi-colon at the end of the line.

Another way to create a netlist is to open the schematic, choose Simulate > Generate
Netlist. This will open a text editor window with the netlist entries listed. You can save
the text and/or edit it. The Netlist doesn't need to be called netlist.log, you can use any
other name, one matching the schematic it represents is recommended.

The following example is a netlist generated for a resistive PI pad:

Options ResourceUsage=yes UseNutmegFormat=no

TopDesignName="C:\apps\ads2005a\arf_0705_wrk\networks\PI_pad"

R:R3 _net28 _net27 R=16 Ohm Noise=yes

R:R2 _net28 0 R=80 Ohm Noise=yes

R:R1 _net27 0 R=80 Ohm Noise=yes

S_Param:SP1 CalcS=yes CalcY=no CalcZ=no GroupDelayAperture=1e-4 FreqConversion=no

FreqConversionPort=1 StatusLevel=2 CalcNoise=no SortNoise=0 BandwidthForNoise=1.0 Hz

DevOpPtLevel=0 \

SweepVar="freq" SweepPlan="SP1_stim" OutputPlan="SP1_Output"

SweepPlan: SP1_stim Start=1.0 GHz Stop=10.0 GHz Step=0.1 GHz

OutputPlan:SP1_Output \

Advanced Design System 2011.01 - Using Circuit Simulators

9

Type="Output" \

UseEquationNestLevel=yes \

EquationNestLevel=2 \

UseSavedEquationNestLevel=yes \

SavedEquationNestLevel=2

Port:Term1 _net27 0 Num=1 Z=50 Ohm Noise=yes

Port:Term2 _net28 0 Num=2 Z=50 Ohm Noise=yes

 If the option -r output_rawfile_name is not given in the command, simulation results
will be written to the spectra.raw file. Simulation results can be written to both a readable
raw file and a binary dataset file. To create a readable raw file, you may need to modify
the options listed at the beginning of the netlist. For example, if a netlist contains the
options shown in this example:

Options ResourceUsage=yes UseNutmegFormat=no

TopDesignName="C:\my_projects\DataAccess_wrk\networks\test.ds"

change the options line to:

Options ResourceUsage=yes UseNutmegFormat=no ASCII_Rawfile=yes

TopDesignName="C:\my_projects\DataAccess_wrk\networks\test.ds"

When running a simulation from the command line, hpeesofsim uses the
TopDesignName parameter to determine the dataset name:

If the TopDesignName is a lib:cell:view name, the cell name is used to form
the dataset name. For example, if the netlist contains
TopDesignName=”arf_0705_lib:PI_pad:schematic”, the dataset will be
named PI_pad.ds, and will be written to the current directory.
If the TopDesignName is not a lib:cell:view name, it is treated as a file
system path. The dataset will be written to this path, with “.ds” appended if
it’s not already specified. For example, if the netlist contains
TopDesignName=”C:\my_projects\DataAccess_wrk\data\test.ds”, the
dataset will be written to that path.

 TopDesignName is the name of the dataset file to be written, which is a binary file. You
can use the dsdump command (located in $HPEESOF_DIR/bin) to view the dataset file as
shown in this example:

dsdump test.ds

 General Syntax
This topic uses the following typographical conventions:

 Typographic Conventions

Type Style Used For

[. . .] Data or character fields enclosed in brackets are optional.

italics Names and values in italics must be supplied

bold Words in bold are ADS simulator keywords and are also
required.

 The ADS Simulator Syntax
The following sections outline the basic language rules. For details about restrictions
concerning reserved names, see Reserved Names and Name Spaces.

 Field Separators

A delimiter is one or more blanks or tabs.

Advanced Design System 2011.01 - Using Circuit Simulators

10

 Continuation Characters

A statement may be continued on the next line by ending the current line with a backslash
and continuing on the next line.

 Name Fields

A name may have any number of letters or digits in it but must not contain any delimiters
or non alphanumeric characters. The name must begin with a letter or an underscore (_
).

 Parameter Fields

A parameter field takes the form name = value, where name is a parameter keyword and
value is either a numeric expression, the name of a device instance, the name of a model
or a character string surrounded by double quotes. Some parameters can be indexed, in
which case the name is followed by [i] , [i,j] , or [i,j,k] . i , j , and k must be integer
constants or variables.

 Node Names

A node name may have any number of letters or digits in it but must not contain any
delimiters or non alphanumeric characters. If a node name begins with a digit, then it
must consist only of digits.

 Lower/Upper Case

The ADS Simulator is case sensitive.

 Units and Scale Factors

The fundamental units for the ADS Simulator are shown in the following table. A
parameter with a given dimension assumes its value has the corresponding units. For
example, for a resistance, R=10 its assumed to be 10 ohms.

 Fundamental Units in ADS

Dimension Fundamental Unit

Frequency Hertz

Resistance Ohms

Conductance Siemens

Capacitance Farads

Inductance Henries

Length meters

Time seconds

Voltage Volts

Current Amperes

Power Watts

Distance meters

Temperature Celsius

 Recognizing Scale Factors

Variations on the fundamental units in ADS are referred to as scale factors . A scale factor
is a single word that begins with a letter or an underscore character (_). The remaining

Advanced Design System 2011.01 - Using Circuit Simulators

11

characters, if any, consist of letters, digits, and underscores. The value of a scale factor is
resolved using the following rules in the order shown:

If the scale factor exactly matches one of the predefined scale-factor words (see the1.
following table), then use the numerical equivalent; otherwise, go to rule 2.

 Predefined Scale Factor Words

Scale Factor Word Numerical Equivalent Meaning

mil 2.54*10-5 mils

mils 2.54*10-5 mils

in 2.54*10-2 inches

ft 12*2.54*10-2 feet

mi 5280*12*2.54*10-2 miles

cm 1.0*10-2 centimeters

PHz 1.0*1015

dB 1.0 decibels

nmi 1852 nautical
miles

If the scale factor exactly matches one of the scale-factor units (see following table)2.
except for m , then use the numerical equivalent; otherwise, go to rule 3.

 Scale Factor Units

Scale Factor Unit Numerical Equivalent Meaning

A 1.0 Amperes

F 1.0 Farads

H 1.0 Henries

Hz 1.0 Hertz

meter
meters
metre
metres

1.0 meters

Ohm
Ohms

1.0 Ohms

S 1.0 Siemens

sec 1.0 seconds

V 1.0 Volts

W 1.0 Watts

If the first character of the scale factor is one of the legal scale-factor prefixes (see3.
the following table), then use the numerical equivalent; otherwise, go to rule 4.

 Scale Factor Prefixes

Prefix Numerical Equivalent Meaning

T 1012 Tera

G 109 Giga

M 106 Mega

K 103 kilo

k 103 kilo

_ (underscore) 1 (no scale)

m 10-3 milli

u 10-6 micro

n 10-9 nano

p 10-12 pico

f 10-15 femto

a 10-18 atto

The scale factor is not recognized.4.
Important considerations include:

Scale factors are case sensitive.
A single m means milli , not meters .

Advanced Design System 2011.01 - Using Circuit Simulators

12

A lower case f by itself means femto . An upper case F by itself means Farad .
A lower case a by itself means atto . An upper case A by itself means Ampere .
The imperial units (mils , in , ft , mi , nmi) do not accept prefixes.
The ADS simulator will report a warning if an unrecognized scale factor is
encountered, and use a scale-factor value of 1.0.
It is not required that the characters following a scale-factor prefix match one of
the scale-factor units.
There are no scale factors for dBm , dBW , or temperature. ADS functions are
provided to convert these values to the corresponding fundamental units (Watts
and Celsius).

 Booleans

Many devices, models, and analyses have parameters that are boolean valued. Zero is
used to represent false or no, whereas any number besides zero represents true or yes.
The keywords yes and no can also be used.

 Global Nodes

Global nodes are user-defined nodes which exist throughout the hierarchy. The global
nodes must be defined on the first lines in the netlist. They must be defined before they
are used.

General Form:

globalnode nodename1 [nodename2] [... nodenameN]

Example:

globalnode sumnode my_internal_node

 Device Pin Names

To support the schematic device pin names in a dataset, the device pin names are passed
to the simulator through the netlist. For each unique device type in the design, the pin-
mapping information is passed in the following format:

mapping {

pinMapping {

device-name pinMap pinMap

device-name pinMap pinMap

device-name pinMap pinMap

}

}

where pinMap is:

< integer >:"< pinName >"

Example:

mapping {

 pinMapping {

 R 1:"PLUS" 2:"MINUS"

 V_Source 1:"PLUS" 2:"MINUS"

 BJTM1 1:"c" 2:"b" 3:"e"

 C 1:"PLUS" 2:"MINUS"

 }

}

Advanced Design System 2011.01 - Using Circuit Simulators

13

Additional information about mapping device pin names and the simulator syntax
includes:

The keywords mapping , pinCurrent , and pinMapping are reserved. They cannot be
used as names for instances, nodes, variables, etc.
The mapping block appears at the top level of the netlist. A mapping block cannot
exist at the sub-circuit level. The mapping block can exist anywhere within the top
level, preferably at the bottom or top of the netlist.
Currently only one mapping and one pinMapping block can exist in a circuit.

 Comments

Comments are introduced into an ADS Simulator file with a semicolon; they terminate at
the end of the line. Any text on a line that follows a semicolon is ignored. Also, all blank
lines are ignored.

 Statement Order

Models can appear anywhere in the netlist. They do not have to be defined before a model
instance is defined.

Some parameters expect a device instance name as the parameter value. In these cases,
the device instance must already have been defined before it is referenced. If not, the
device instance name can be entered as a quoted string using double quotes (").

 Naming Conventions

The full name for an instance parameter is of the form:

[pathName].instanceName.parameterName[index]

where pathName is a hierarchical name of the form

[pathName].subnetworkInstanceName

The same naming convention is used to reference nodes, variables, expressions,
functions, device terminals, and device ports.

For device terminals, the terminal name can be either the terminal name given in the
device description, or tn where n is the terminal number (the first terminal in the
description is terminal 1, etc.). Device ports are referenced by using the name pm , where
m is the port number (the first pair of terminals in the device description is port 1, etc.).

Note that t1 and p1 both correspond to the current flowing into the first terminal of a
device, and that t2 corresponds to the current flowing into the second terminal. If
terminals one and two define a port, then the current specified by t2 is equal and opposite
to the current specified by t1 and p1 .

 Currents

The only currents that can be accessed for simulation, optimization, or output purposes
are the state currents.

 State currents

Most devices are voltage controlled, that is, their terminal currents can be calculated given
their terminal voltages. Circuits that contain only voltage-controlled devices can be solved
using node analysis. Some devices, however, such as voltage sources, are not voltage

Advanced Design System 2011.01 - Using Circuit Simulators

14

controlled. Since the only unknowns in node analysis are the node voltages, circuits that
contain non-voltage-controlled devices cannot be solved using node analysis. Instead,
modified node analysis is used. In modified node analysis, the unknown vector is
enlarged. It contains not only the node voltages but the branch currents of the non-
voltage-controlled devices as well. The branch currents that appear in the vector of
unknowns are called state currents. Since the ADS Simulator uses modified node analysis,
the values of the state currents are available for output.

If the value of a particular current is desired but the current is not a state current, insert a
short in series with the desired terminal. The short does not affect the behavior of the
circuit but does create a state current corresponding to the desired current.

To reference a state current, use the device instance name followed by either a terminal
or port name. If the terminal or port name is not specified, the state current defaults to
the first state current of the specified device. Note that this does not correspond to the
current through the first port of the device whenever the current through the first port is
not a state current. For some applications, the positive state current must be referenced,
so a terminal name of t1 or t3 is acceptable but not t2 . Using port names avoids this
problem. The convention for current polarity is that positive current flows into the positive
terminal.

 Integer Formats for Simulator Input

There are notation rules for simulator input of hex, octal and binary integer constants.

Integers starting with "0x"/"0X" are read in hexadecimal format.
Integers starting with "0b"/"0B" are read in binary format.
Integers starting with "0" and not followed by any of [X,x,B,b] are read in octal
format.
Integers starting with [1-9] are read in decimal format.

Real numbers are always read in decimal format.

 Instance Statements
General Form:

type [:name] node1 ... nodeN [[param=value] ...]
type [:name] [[param=value] ...]

Examples:

ua741:OpAmp in out out

C:C1 2 3 C=10pf

HB: Distortion1 Freq=10GHz

The instance statement is used to define to the ADS Simulator the information unique to a
particular instance of a device or an analysis. The instance statement consists of the
instance type descriptor and an optional name preceded by a colon. If it is a device
instance with terminals, the nodes to which the terminals of the instance are connected
come next. Then the parameter fields for the instance are defined. The parameters can be
in any order. The nodes, though, must appear in the same order as in the device or
subnetwork definition.

The type field may contain either the ADS Simulator instance type name, or a user-
supplied model or subnetwork name. The name can be any valid name, which means it
must begin with a letter, can contain any number of letters and digits, must not contain
any delimiters or non alphanumeric characters, and must not conflict with other names
including node names.

 Model Statements
General Form:

Advanced Design System 2011.01 - Using Circuit Simulators

15

model name type [[param = value] ...]

Examples:

model NPNbjt bjt NPN=yes Bf=100 Js=0.1fa

Often characteristics of a particular type of element are common to a large number of
instances. For example, the saturation current of a diode is a function of the process used
to construct the diode and also of the area of the diode. Rather than describing the
process on each diode instantiation, that description is done once in a model statement
and many diode instances refer to it. The area, which may be different for each device, is
included on each instance statement. Though it is possible to have several model
statements for a particular type of device, each instance may only reference at most one
model. Not all device types support model statements.

The name in the model statement becomes the type in the instance statement. The type
field is the ADS Simulator-defined model name. Any parameter value not supplied will be
set to the model's default value.

Most models, such as the diode or bjt models, can be instantiated with an instance
statement. There are exceptions. For instance, the Substrate model cannot be
instantiated. Its name, though, can be used as a parameter value for the Subst parameter
of certain transmission line devices.

 Subnetwork Definitions
General Form:

define subnetworkName (node1 ... nodeN)

[parameters name1 = [value1] ... name n = [value n]]

.

.

.

elementStatements

.

.

.

end [subnetworkName]

Examples:

define DoubleTuner (top bottom left right)

parameters vel=0.95 r=1.0 l1=.25 l2=.25

tline:tuner1 top bottom left left len=l1 vel=vel r=r

tline:tuner2 top bottom right right len=l2 vel=2*vel r=r

end DoubleTuner

DoubleTuner:InputTuner t1 b2 3 4 l1=0.5

A subnetwork is a named collection of instances connected in a particular way that can be
instantiated as a group any number of times by subnetwork calls. The subnetwork call is
in effect and form, an instance statement. Subnetwork definitions are simply circuit
macros that can be expanded anywhere in the circuit any number of times. When an
instance in the input file refers to a subnetwork definition, the instances specified within
the subnetwork are inserted into the circuit. Subnetworks may be nested. Thus a
subnetwork definition may contain other subnetworks. However, a subnetwork definition
cannot contain another subnetwork definition. All the definitions must occur at the top
level.

An instance statement that instantiates a subnetwork definition is referred to as a
subnetwork call. The node names (or numbers) specified in the subnetwork call are
substituted, in order, for the node names given in the subnetwork definition. All instances
that refer to a subnetwork definition must have the same number of nodes as are

Advanced Design System 2011.01 - Using Circuit Simulators

16

specified in the subnetwork definition and in the same order. Node names inside the
subnetwork definition are strictly local unless they are global nodes defined with a
globalnode statement. A subnetwork definition with no nodes must still include the
parentheses () .

Parameter specification in subnetwork definitions is optional. Any parameters that are
specified are referred to by name followed by an equals sign and then an optional default
value. If, when making a subnetwork call in your input file, you do not specify a particular
parameter, then this default value is used in that instance. Subnetwork parameters can be
used in expressions within the subnetwork just as any other variable.

Subnetworks are a flexible and powerful way of developing and maintaining hierarchical
circuits. Parameters can be used to modify one instance of a subnetwork from another.
Names within a subnetwork can be assigned without worrying about conflicting with the
same name in another subnetwork definition. The full name for a node or instance include
its path name in addition to its instance name. For example, if the above subnetwork is
included in subckt2 which is itself included in subckt1 , then the full path name of the
length of the first transmission line is subckt1.subckt2.tuner1.len .

Only enough of the path name has to be specified to unambiguously identify the
parameter. For example, an analysis inside subckt1 can reference the length by
subckt2.tuner1.len since the name search starts from the current level in the hierarchy.
If a reference to a name cannot be resolved in the local level of hierarchy, then the parent
is searched for the name, and so on until the top level is searched. In this way, a sibling
can either inherit its parent's attributes or define its own.

 Expression Capability
The ADS Simulator has a powerful and flexible symbolic expression capability which
enables you to define variables, functions, and expressions in the netlist. These can then
be used to define other functions and expressions to specify device parameters and
optimization goals, etc.

Variables are your basic building blocks. For example, declaring "var1 = 2.5" assigns the
value "2.5" to the variable "var1." Functions are simply parameterized variables such as
F(x) =x+x**2. You can combine variables, constants, functions, and operators to form
expressions. An expression can be a simple or complex series of variables, operators, and
functions that evaluates to a single value. For example, y = abs(0.3-j*0.3) returns a value
of 3.015.

The names for variables, expressions, and functions follow the same hierarchy rules that
instance and node names do. Thus, local variables in a subnetwork definition can assume
values that differ from one instance of the subnetwork to the next.

Functions and expressions can be defined either globally or locally anywhere in the
hierarchy. All variables are local by default. Local variables are known in the subnetwork
in which they are defined, and all lower subnetworks; they are not known at higher levels.
Variables defined at the root (the top level) are known everywhere within the circuit. To
specify a global variable, the global keyword must precede the variable name. The
global keyword causes the variable to be defined at the root of the hierarchy tree
regardless of the lexical location.

Examples:

global var1 = 2.718

The expression capability includes the standard math operations of + - / * ^ in addition to
parenthesis grouping. Scale factors are also allowed in general expressions and have
higher precedence than any of the math operators. For more information about units and
scale factors, see Units and Scale Factors.

For complete information about variables, constants, available functions, and using them
to define simulator expressions, see the Simulator Expressions (expsim) documentation.

 C-Preprocessor

Advanced Design System 2011.01 - Using Circuit Simulators

17

Before being interpreted by the ADS Simulator, all input files are run through a built-in
preprocessor based upon a C preprocessor. This brings several useful features to the ADS
Simulator, such as the ability to define macro constants and functions, to include the
contents of another file, and to conditionally remove statements from the input. All C
preprocessor statements begin with # as the first character.

Unfortunately, for reasons of backward compatibility, there is no way to specify include
directories. The standard C preprocessor `` -I '' option is not supported; instead, `` -I ''
is used to specify a file for inclusion into the netlist.

 File Inclusion

Any source line of the form

#include "filename"

is replaced by the contents of the file filename . The file must be specified with an
absolute path or must reside in either the current working directory or in
/$HPEESOF_DIR/circuit/components/.

 Library Inclusion

The C preprocessor automatically includes a library file if the -N command line option is
not specified and if such a file exists. The first file found in the following list is included as
the library:

$HPEESOF_DIR/circuit/components/gemlib

$EESOF_DIR/circuit/components/gemlib

$GEMLIB

.gemlib

~/.gemlib

~/gemini/gemlib

A library file is specified by the user using the -I filename command line option. More
than one library may be specified. Specifying a library file prevents the ADS Simulator
from including any of the above library files.

 Macro Definitions

A macro definition has the form;

#define name replacement-text

It defines a macro substitution of the simplest kind--subsequent occurrences of the token
name are replaced by replacement-text . The name consists of alphanumeric characters
and underscores, but must not begin with a numeric character; the replacement text is
arbitrary. Normally the replacement text is the rest of the line, but a long definition may
be continued by placing a "\" at the end of each line to be continued. Substitutions do not
occur within quoted strings. Names may be undefined with

#undef name

It is also possible to define macros with parameters. For example,

#define to_celcius(t) (((t)-32)/1.8)

is a macro with the formal parameter t that is replaced with the corresponding actual
parameters when invoked. Thus the line

options temp=to_celcius(77)

is replaced by the line

Advanced Design System 2011.01 - Using Circuit Simulators

18

options temp=(((77)-32)/1.8)

Macro functions may have more than one parameter, but the number of formal and actual
parameters must match.

Macros may also be defined using the -D command line option.

 Conditional Inclusion

It is possible to conditionally discard portions of the source file. The #if line evaluates a
constant integer expression, and if the expression is non-zero, subsequent lines are
retained until an #else or #endif line is found. If an #else line is found, any lines between
it and the corresponding #endif are discarded. If the expression evaluates to zero, lines
between the #if and #else are discarded, while those between the #else and #endif are
retained. The conditional inclusion statements nest to an arbitrary level of hierarchy. The
following operators and functions can be used in the constant expression;

! Logical negation.

|| Logical or.

&& Logical and.

== Equal to.

!= Not equal to.

> Greater than.

< Less than.

>= Greater than or equal to.

<= Less than or equal to.

+ Addition.

defined(x) 1 if x defined, 0 otherwise.

The #ifdef and #ifndef lines are specialized forms of #if that test whether a name is
defined.

Caution
Execution of preprocessor instructions depend on the order in which they appear on the netlist. When
using preprocessor statements make sure that they are in the proper order. For example, if an #ifdef
statement is used to conditionally include part of a netlist, the corresponding #define statement is
contained in a separate file and #include is used to include the content of the file into the netlist, the
#include statement will have to appear before the #ifdef statement for the expression to evaluate
correctly.

 Data Access Component
The Data Access Component provides a clean, unified way to access tabular data from
within a simulation. The data may reside in either a text file of a supported, documented
format (e.g. discrete MDIF, model MDIF, Touchstone, CITIfile), or a dataset. It provides a
variety of access methods, including lookup by index/value, as well as linear, cubic spline
and cubic interpolation modes, with support for derivatives.

The Data Access Component provides a "handle" with which one may access data from
either a text file or dataset for use in a simulation. The DAC is implemented as a cktlib
subnetwork fragment with internally known expressions names (e.g. DAC, _TREE) that are
assigned via _VarEqn calls such as read_data() and access_all_data() . The accessed
data can be used by other components (including models, devices, variables, subnetwork
calls and other DAC instances) in the netlist, either by the specific file syntax or via the
VarEqn function dep_data() .

The DAC can also be used to supply parameters to device and model components from
text files and datasets. In this case, the AllParams device/model parameter is used to
refer to a DAC component. The component's parameters will then be accessed from the
DAC and supplied to the instance. Care is taken to ensure that only matching (between
parameter names in the component definition and DAC dependent column names) data is
used. Also, parameter data can be assigned "inline" - as is usually done - in which case

Advanced Design System 2011.01 - Using Circuit Simulators

19

the inline data takes precedence over the DAC data.

As the DAC component is composed of just a parameterized subnetwork, it allows
alterations (sweep, tune, optimize, yield) of its parameters. Consequently any component
that uses DAC data via file, dep_data() or AllParams will automatically be updated when a
DAC parameter is altered. A caveat with sweeping over files using AllParams is that all the
files must contain the same number of dependent columns of data.

Below is an example definition of a simple DAC component that accesses discrete values
from a text file:

#uselib "ckt" , "DAC"

DAC: DAC1 File="C:\jeffm\ADS_testing\ADS13_test_wrk/.\data\SweptData.ds"

Type="dataset" Block="S" InterpMode="linear" InterpDom="ri" iVar1="X"

iVal1=X iVar2="freq" iVal2=freq

S_Port:S2P1 _net1 0 _net6 0 S[1,1]=file{DAC1, "S[1,1]"}

S[1,2]=file{DAC1,"S[1,2]"} S[2,1]=1 S[2,2]=0 Recip=no

dindex = 1

DAC:atc1 File="vdcr.mdf" Type="dscr" \

InterpMode="index_lookup" iVar1=1 iVal1=dindex

And its use to provide the resistance value to a pair of circuit components:

R:R1 n1 0 R=file{atc1, "R"} kOhm

R:R2 n1 0 R=dep_data(atc1, "R") kOhm

Here, it provides the value to a variable:

V1 = file{atc1, "Vdc"}

V1 could be used elsewhere in the circuit, as expected.

In this example, a scaling factor applied to the result of a DAC access is shown:

File = "atc.mdf"

Type = "dscr"

Mode="index_lookup"

Cnom = "Cnom"

DAC:atc_s File=File Type=Type InterpMode=Mode iVar1=1 iVal1 = Cs_row

C:Cs n1 n2 C=file{atc_s, Cnom} Pf}}

In this example, a use of AllParams is shown to enter model parameters from a text file:

File = "c:\gemini\vdcr.mdf"

Type = "dscr"

Mode="index_lookup"

DAC:dac1 File=File Type=Type InterpMode=Mode iVar1=1 iVal1 = ix

model rm1 R_Model R=0 AllParams = dac1._DAC

rm1:rm1i1 n3 0

 Reserved Names and Name Spaces
When developing a netlist using the ADS simulator syntax, there are several different
places in a netlist where names must be supplied, such as instance names and variable
names. When selecting names, be sure that you do not use a reserved name (keyword).

There are six name categories: design/subnetwork, instance, parameter, model, variable,
and node. These are known to the simulator as name spaces. Additionally, there are five
reserved name groups. Each name space has one or more reserved name groups
associated with it. This means that when choosing a name for a category such as a
parameter name, you cannot use any of the names in the reserved name groups
associated with the parameter name space.

When a user-entered name is parsed, it is checked to see that is not in the group of
reserved names associated with the name space in which it is used. If the user-entered
name matches a reserved name, the simulator will issue an error message and terminate.
The simulator is case-sensitive, so the case of characters in a name must match, as well
as the characters themselves.

Advanced Design System 2011.01 - Using Circuit Simulators

20

Note
Please be aware that names associated with AEL expressions (for example, node names, which are used
to name items in the dataset) may have other restrictions that are not noted here. These restrictions are
outside the domain of the simulator itself, and follow from the design of the AEL and/or the dataset codes.
Only those name restrictions that are imposed by the ADS simulator parser are shown here.

The following tables provide details about the six name spaces, their associated reserved
name groups, and lists of the individual reserved names. At the end of the section is a
complete alphabetical listing of all reserved names. In addition to these lists, any built-in
component name should not be used as a design/subnetwork name. Refer to the
component catalogs for the built-in component names.

Note
You can use the hpeesofsim command to view all keywords. Enter the following command from the
command line:
hpeesofsim -h keywords

For a list of the name spaces with descriptions, examples, and their associated
reserved name groups, see the table ADS Simulator Namespaces and Associated
Reserved Name Groups.
For a list of reserved names composing each reserved name group, see these tables:

Parser Reserved Names Group
Reserved Names Group
Predefined Expression Reserved Names Group
Predefined Variable Reserved Names Group
Predefined Function Reserved Names Group

For an alphabetical listing of reserved names, see the table ADS Reserved Words -
Alphabetical List.

 ADS Simulator Namespaces and Associated Reserved Name Groups

Advanced Design System 2011.01 - Using Circuit Simulators

21

Name Space Reserved Name Group Description and Examples

Design/subnetwork Parser Reserved Names
see table Parser Reserved
Names Group
Reserved Names
see table Reserved Names
Group

These are the names given to the designs that contain
the top-level circuit and any subnetwork definitions.
Examples: a top-level design named MyLowNoiseAmp
and a subnetwork design named MyBandpasssFilter .

Device/subnetwork
instance

Parser Reserved Names
see table Parser Reserved
Names Group
Reserved Names
see table Reserved Names
Group
Predefined Expression Names

see table Predefined
Expression Reserved Names
Group
Predefined Variable Names
see table Predefined Variable
Reserved Names Group
Predefined Function Names
see table Predefined Function
Reserved Names Group

These are the labels given to components that are
placed in the design.
Examples: an R component labelled R1 and a
MyBandpassFilter component labelled Filter1 .

Subnetwork parameter Parser Reserved Names
see table Parser Reserved
Names Group
Reserved Names
see table Reserved Names
Group

These are the names given to parameters defined for a
subnetwork or user-defined model.
Example: a parameter named CenterFreq defined for
the subnetwork MyBandpassFilter .

Model Parser Reserved Names
see table Parser Reserved
Names Group
Reserved Names
see table Reserved Names
Group

These are the instance names associated with the
model definition and model instance.
Example: a BJT_Model with the InstanceName BJTM1 .

Variable/expression Parser Reserved Names
see table Parser Reserved
Names Group
Reserved Names
see table Reserved Names
Group
Predefined Expression Names

see table Predefined
Expression Reserved Names
Group
Predefined Variable Names
see table Predefined Variable
Reserved Names Group
Predefined Function Names
see table Predefined Function
Reserved Names Group

These are the names given to VarEqn items.
Example: a variable named Rnominal.

Node Parser Reserved Names
see table Parser Reserved
Names Group

These are wire/pin labels.
Example: a wire labelled Vout.

 Parser Reserved Names Group

Advanced Design System 2011.01 - Using Circuit Simulators

22

Parser Reserved Names (a – m) (n – _v)

aele
AllParams
Allparams
allParams
allparams
All_Params
All_params
all_Params
all_params
and
by
define
discrete
distcompname
doe
else
elseif
end
endif
equals
file
gauss
global
globalnode
ground
if
inline
local
lognormal
logScale
mapping
model

nested
no
nodoe
noopt
nostat
not
notequals
notune
opt
or
parameters

pinMapping

ppt
stat
static
then
to
tune
unconst
uniform
yes
_M
_VER
_VEr
_VeR
_Ver
_vER
_vEr
_veR
_ver

 Reserved Names Group

Reserved Names

delay
icor
j
nfmin
noise
pi
portz
rn
sopt

 Predefined Expression Reserved Names Group

Predefined Expression Names

gaussian
omega
tempkelvin

 Predefined Variable Reserved Names Group

Advanced Design System 2011.01 - Using Circuit Simulators

23

Predefined Variable Names (b – s) (t – __z)

boltzmann
c0
CostIndex
dcSourceLevel
DefaultValue
DeviceIndex
DF_DefaultInt
DF_Value
DF_ZERO_OHMS
doeindex
doeIter
e
e0
freq
hugereal
LinearizedElementIndex
ln10
logNodesetScale
logRforce
logRshunt
mcindex
mcTrial
noisefreq
Nsample
optIter
planck
qelectron
scale
ScheduleCycle
sourceLevel
ssfreq

temp
time
timestep
tinyreal
tnom
tranorder
u0
version_check
_ABM_Phase
_ABM_SourceLevel
_ac_state
_dc_state
_default
_fc
_freq1
_freq10
_freq11
_freq12
_freq2
_freq3
_freq4
_freq5
_freq6
_freq7
_freq8
_freq9
_harm
_hb_state
_p2dInputPower
_sigproc_state
_sm_state
_sp_state
_tr_state
__fdd
__fdd_v
__s
__y
__z

 Predefined Function Reserved Names Group

Predefined Function Names (a – k) (l – _x)

abs
access_all_data
access_all_data_new
access_data
access_data_new
acos
acosh
amp_harm_coef
arcsinh
arctan
asin
asinh
atan
atan2
atanh
attenuator_warn
awg_dia
bin
bitseq
ceil
check_indep_limits
coef_count
complex
compute_mp_poly_coef
compute_poly_coef
conj
cos
cosh
cos_pulse
cot
coth
cpx_gain_poly
ctof
ctok
cxform
damped_sin
db

length
lfsr
limit_warn
list
ln
log
log10
log_amp
log_amp_cas
lookup
mag
makearray
max
min
miximt_coef
miximt_poly
mp_fetchS21
mp_poly_gain
multivar_access
multivar_tree
multi_freq
names
nf
norm
phase
phasedeg
phaserad
phase_noise_pwl
polar
polarcpx
pow
PrintErrorMessage
pulse
pwl
pwlr
pwlr_tr
qinterp

Advanced Design System 2011.01 - Using Circuit Simulators

24

dbm
dbmtoa
dbmtov
dbmtow
dbpolar
dbwtow
deembed
deg
delay
dep_data
deriv
dphase
dsexpr
dstoarray
d_atan2
echo
embedded_ptolemy_exec
ensure_ext
erf_pulse
eval_miso_poly
eval_poly
exp
exp_pulse
fetch_envband
floor
fmod
fread
freq_mult_coef
freq_mult_poly
ftoc
ftok
gcdata_to_poly
generate_gmsk_iq_spectra
generate_gmsk_pulse_spectra
generate_piqpsk_spectra
generate_pulse_train_spectra
generate_qam16_spectra
generate_qpsk_pulse_spectra
get_array_size
get_attribute
get_block
get_fund_freq
get_indep_limits
get_LSfreqs
get_LSpowrs
get_max_points
get_S2D_attribute
hpvar_to_vs
hypot
i
ilsb
imag
impulse
imt_hbdata_to_array
imt_hpvar_to_array
include_SSpower
index
innerprod
inoise
int
internal_generate_gmsk_iq_spectra
internal_generate_gmsk_pulse_spectra
internal_generate_piqpsk_spectra
internal_generate_pulse_train_spectra
internal_generate_qam16_spectra
internal_generate_qpsk_pulse_spectra
internal_get_fund_freq
internal_window
interp
interp1
interp2
interp3
interp4
iss
issue_message_set_value
itob
iusb
jn
ktoc
ktof

rad
ramp
rawtoarray
readdata
readlib
readraw
read_data
read_lib
read_SSpower
real
rect
rem
repeat
ripple
rms
rpsmooth
scalearray
sens
setDT
sffm
sgn
sin
sinc
sinh
spectrum
sprintf
sqrt
status_print
step
strcat
stypexform
sym_set
system
tan
tanh
thd
toi
transform
v
value
vlsb
vnoise
vss
vswrpolar
vusb
WarnTimeDomainDeembed
window
wtodbm
_bitwise_and
_bitwise_asl
_bitwise_asr
_bitwise_not
_bitwise_or
_bitwise_xnor
_bitwise_xor
_discrete_density
_divn
_gaussian
_gaussian_tol
_get_fnom_freq
_get_fund_freq_for_fdd
_lfsr
_mvgaussian
_mvgaussian_cov
_nfmin
_n_state
_phase_freq
_pwl_density
_pwl_distribution
_randvar
_rn
_shift_reg
_si
_si_bb
_si_d
_si_e
_sopt
_sv
_sv_bb
_sv_d
_sv_e
_tn
_to

Advanced Design System 2011.01 - Using Circuit Simulators

25

_tt
_uniform
_uniform_tol
_xcross

 ADS Reserved Words - Alphabetical List

A C

All_Params
All_params
AllParams
Allparams

CostIndex

D L

DF_DefaultInt
DF_Value
DF_ZERO_OHMS
DefaultValue
DeviceIndex

LinearizedElementIndex

N P

Nsample PrintErrorMessage

S W

ScheduleCycle WarnTimeDomainDeembed

a b

abs
access_all_data
access_all_data_new
access_data
access_data_new
acos
acosh
aele
all_Params
all_params
allParams
allparams

amp_harm_coef
and
arcsinh
arctan
asin
asinh
atan
atan2
atanh
attenuator_warn
awg_dia

bin
bitseq
boltzmann
by

c d

c0
ceil
check_indep_limits
coef_count
complex
compute_mp_poly_coef
compute_poly_coef
conj

cos
cos_pulse
cosh
cot
coth
cpx_gain_poly
ctof
ctok
cxform

d_atan2
damped_sin
db
dbm
dbmtoa
dbmtov
dbmtow
dbpolar
dbwtow
dcSourceLevel
deembed
define

deg
delay
dep_data
deriv
discrete
distcompname
doe
doeindex
doeIter
dphase
dsexpr
dstoarray

e f

e
e0
echo
else
elseif
embedded_prolemy_exec
end

endif
ensure_ext
equals
erf_pulse
eval_miso_poly
eval_poly
exp
exp_pulse

fetch_envband
file
floor
fmod
fread

freq
freq_mult_coef
freq_mult_poly
ftoc
ftok

g h

gauss
gaussian
gcdata_to_poly
generate_gmsk_iq_spectra
generate_gmsk_pulse_spectra
generate_piqpsk_spectra
generate_pulse_train_spectra
generate_qam16_spectra
generate_qpsk_pulse_spectra

get_array_size
get_attribute
get_block
get_fund_freq
get_indep_limits
get_LSfreqs
get_LSpowrs
get_max_points
get_S2D_attribute
global
globalnode
ground

hpvar_to_vs
hugereal
hypot

i j

i j

Advanced Design System 2011.01 - Using Circuit Simulators

26

icor
if
ilsb
imag
impulse
imt_hpvar_to_array
imt_hbdata_to_array
include_SSpower
inline
index
innerprod
inoise
int
internal_generate_gmsk_iq_spectra
internal_generate_gmsk_pulse_spectra
internal_generate_piqpsk_spectra
internal_generate_pulse_train_spectra
internal_generate_qam16_spectra
internal_generate_qpsk_pulse_spectra
internal_get_fund_freq
internal_window
interp
interp1
interp2
interp3
interp4
iss
issue_message_set_value
itob
iusb

jn

k l

ktoc
ktof

length
lfsr
limit_warn
list
ln
ln10
local
log

log10
logNodesetScale
lognormal
logRforce
logRshunt
logScale
log_amp
log_amp_cas
lookup

m n

mag
makearray
mapping
max
mcTrial
mcindex
min

miximt_coef
miximt_poly
model
mp_fetchS21
mp_poly_gain
multi_freq
multivar_access
multivar_tree

names
nested
nf
nfmin
no
nodoe
noise

noisefreq
noopt
norm
nostat
not
notequals
notune

o p

omega
opt
optIter
or

parameters
phase
phase_noise_pwl
phasedeg
phaserad
pi
pinCurrent
pinMapping
planck

polar
polarcpx
portz
pow
ppt
pulse
pwl
pwlr
pwlr_tr

q r

qelectron
qinterp

rad
ramp
rawtoarray
read_data
read_lib
read_SSpower
readdata
readlib
readraw

real
rect
rem
repeat
ripple
rms
rn
rpsmooth

s t

scale
scalearray
sens
setDT
sffm
sgn
sin
sinc

spectrum
sprintf
sqrt
ssfreq
stat
static
status_print
step

tan
tanh
temp
tempkelvin
thd
then
time

timestep
tinyreal
tnom
to
toi
tranorder
transform
tune

Advanced Design System 2011.01 - Using Circuit Simulators

27

sinh
sopt
sourceLevel

strcat
stypexform
sym_set
system

u v

u0
unconst

uniform v
value
version_check
vlsb

vnoise
vss
vswrpolar
vusb

w y

window
wtodbm

yes

_

_ABM_Phase
_ABM_SourceLevel
_ac_state
_bitwise_and
_bitwise_asl
_bitwise_asr
_bitwise_not
_bitwise_or
_bitwise_xnor
_bitwise_xor
_dc_state
_default
_discrete_density
_divn
_fc
_freq1
_freq2
_freq3
_freq4
_freq5
_freq6
_freq7
_freq8
_freq9
_freq10
_freq11
_freq12

_gaussian
_gaussian_tol
_get_fnom_freq
_get_fund_freq_for_fdd
_harm
_hb_state
_lfsr
_M
_mvgaussian
_mvgaussian_cov
_n_state
_nfmin
_p2dInputPower
_phase_freq
_pwl_density
_pwl_distribution

_randvar
_rn
_shift_reg
_si
_si_bb
_si_d
_si_e
_sigproc_state
_sm_state
_sopt
_sp_state
_sv
_sv_bb
_sv_d
_sv_e

_tn
_to
_tr_state
_tt
_uniform
_uniform_tol
_VER
_VEr
_VeR
_Ver
_vER
_vEr
_veR
_ver
_xcross

__

__fdd
__fdd_v
__randseed

__s
__y
__z

Advanced Design System 2011.01 - Using Circuit Simulators

28

 Parameter Sweeps and Sweep Plans
 Generally, sweeps of individual parameters can be performed most efficiently from within
many of the simulator dialog boxes themselves. The ability to step through a series of
values automatically is incorporated into all the standard simulation controllers. Sweeps
can be performed at both the circuit and the system level.

The following parameters are typical candidates for sweeping:

Signal frequency, amplitude, or power
Bias voltage or current
Resistance
Signal path attenuation
Impedance
Ambient temperature
Most component parameters

However, it is possible to combine sweeps of several parameters into a hierarchical sweep
plan. By using parameter sweeps, you can do the following:

Find the bias voltage that yields the best mixer conversion gain.
Find the load impedance that yields the lowest harmonic distortion.
Simulate a load-pull measurement.
Simulate the effects of process variations and temperature on circuit performance.

By selecting the ParamSweep and SweepPlan controllers from any of the simulator
palettes, you can sweep a variety of parameters and construct a series of sweep plans for
special purposes. See the sections SweepPlan Controller and Parameter Sweep Controller.

 Conducting Sweeps
 Sweeps of frequencies can be conducted from within many of the simulation controllers
themselves, using options available under the Sweep tab where applicable. To sweep a
parameter such as power, for example, select a ParamSweep controller from a simulator
palette and edit it. It is necessary to ensure that frequency and power variables to be
swept are defined appropriately in a source component, such as a P_1Tone component
(available in the Sources-Freq Domain library).

If using the Load Sharing Facility (LSF) utility, you can break up a sweep and run the
simulation on multiple machines, in parallel, by selecting Parallel Hosts as the Simulation
Mode (Simulate > Simulation Setup). Individual sweep points are run on each machine
and results combined into a single dataset on the local machine. For details on setting up
remote and local machines for remote processing, see "Using Remote Simulation" in the
installation documentation for your platform:

Windows Installation (instalpc)
UNIX and Linux Installation (install)

 Using Options under the Simulator Sweep Tab

A variety of simulation options enable you to conduct a simulation for only a single
parameter at a single value, or to sweep a parameter over a defined range, either linear
or logarithmic. They also enable you to select a named sweep plan that you can define.

Select the Sweep tab in various simulation controllers to do the following:

Define a parameter to sweep (can be a variable or component parameter)
Select a sweep type
Select start, stop, and step sizes
Select a sweep plan

A parameter entered into the Parameter to sweep field will appear on the schematic in
quotes. To display a parameter to sweep so you can edit it directly on the schematic, do
the following:

Advanced Design System 2011.01 - Using Circuit Simulators

29

Select the Display tab.1.
Select SweepVar.2.
Select Display parameter on schematic, then click OK.3.

You can then define that parameter directly on the schematic, taking care to place the
definition in double quotes.

 Using Sweep Controllers

In addition to the sweeps that are provided within various simulators, ParamSweep and
SweepPlan controllers are available in each simulation palette. To use these controllers,
place and edit them in a schematic as you would other controllers. You must also define
the swept parameter in a VAR item. While both of these sweep controllers expand the
sweep capability beyond what a simulator provides, they do have differences.

The ParamSweep can be used by itself to sweep a parameter that has been defined. This
controller can sweep only in equal increments using single point, linear, or log sweeps.
The ParamSweep must also identify the simulator to be used. If a design happens to use
additional simulators, you can enter their names in the ParamSweep in the order they
should be invoked.

The SweepPlan controller provides more flexibility. It supports more ranges, and a sweep
plan can include a single point along with sweeps across a range of values. To use a
SweepPlan controller that you have defined, it must be referenced by a ParamSweep or
simulation controller. To reference a SweepPlan controller, select Use sweep plan on the
ParamSweep or simulation controller, then enter the SweepPlan controller's name. Some
simulation controllers do not include access to a SweepPlan. When a SweepPlan is used,
its settings override any sweep setup information in a simulator or ParamSweep. Multiple
SweepPlans can be chained together by selecting Next Sweep Plan on the SweepPlan
controller.

Note
The placement of sweep controllers within a circuit or system design does not affect the order in which
parameters are swept. Similarly, the order in which the sweeps are automatically numbered does not
determine the order in which they are executed. The order of execution is determined by the order in
which one sweep calls another, as determined by the value of the parameter SweepPlan. The simulation or
ParamSweep controller calls the first sweep plan to be conducted, whatever it is named.

 Basic Procedures
 This section presents the following example sweep scenarios:

Using ParamSweep to Sweep Two Parameters
Using SweepPlans to Perform Fine and Coarse Sweeps

Note
The appropriate simulators are required to run the following simulations, i.e. a Harmonic Balance
simulation requires the Harmonic Balance simulator (included with all Circuit Design suites except the RF
Designer suite.). You may build the examples with the appropriate license, you will simply be unable to
run the simulations.

 Using ParamSweep to Sweep Two Parameters

The next figure below illustrates an example setup that uses a ParamSweep controller
(available in all the simulation palettes) to sweep two parameters. In this case, the result
is a curve-tracer display of collector current versus Vce for different values of Ibb.

Note
This design, Curve_Tracer, is in the Examples directory under MW_Ckts/LNA_wrk. The results are in
Curve_Tracer.dds.

Although it is not necessary for the current design, such a simulation can be used to
characterize a device whose I-V relationships are unknown. SRC1 establishes collector-to-
emitter voltage Vce. SRC2 establishes base current Ibb. The current probe, Probe1,

Advanced Design System 2011.01 - Using Circuit Simulators

30

measures collector current Icc. Note that Probe1 has been named Icc and that Icc.i, the

current at this point, will be plotted later.

The procedure for using the ParamSweep controller, in conjunction with a simulator sweep
and an equation, is outlined as follows.

Note
The following steps describe the design under discussion. Modify the details to suit your particular needs.

 Example setup for a hierarchical sweep

To use the ParamSweep controller to sweep two parameters:

Use a VarEqn component (available from Component Palette List > Data Items >1.
Var eqn) to define two variables-an "inner" and an "outer" variable. The inner
variable is swept over its full range each time the outer variable is stepped.
Use a DC Simulation controller to define the parameter to sweep, the inner variable.2.
Use a ParamSweep controller to establish a sweep plan for the outer variable.3.

The following illustrates this procedure in detail.

 Define Inner and Outer Variables

Edit the VarEqn component on the schematic.1.
In the Select Parameter field, ensure that the following variables are defined by an2.
equation:

VCE = 0 V
IBB = 0 A

Note
The simulator requires that all variables be initialized. The above voltage values would be
used if no sweep were in effect.

These equations are written in the field on the right of the box, with Variable or
Equation Entry Mode set to Name=Value.

Click OK.3.

 Define the Inner Variable in the Simulation Controller

Edit the DC Simulation controller.1.
In the Parameter to sweep field, ensure that VCE is entered. VCE is the inner2.
variable, which has been established in the Var/Eqn component.

Advanced Design System 2011.01 - Using Circuit Simulators

31

Note
Variables entered into this field will appear in quotes on the schematic. If you enter a variable
directly on the schematic (in this case, as the right-hand side of the SweepVar statement in the DC
controller), you must surround the variable with double quotes.

Ensure that the following parameters are set:3.
Sweep Type = Linear
Start/Stop is selected.

Click Apply, then OK.4.

 Establish a Sweep Plan for the Outer Variable

Edit the ParamSweep controller.1.
Ensure that the following parameters are set, and make them visible on the2.
schematic:

Parameter to sweep = IBB. This establishes Idc at SRC2.
Sweep Type = Linear
Start/Stop is selected
Start = 20 µA
Stop = 100 µA
Step-size = 10 µA

Select the Simulations tab, and ensure that DC1 is entered in the Simulation 1 field.3.

 Launch the Simulation and Display Data

Launch the simulation. The following is a plot of Icc.i:1.

Information such as that depicted above is useful in deciding whether a device is suitable
for a given application where the limiting factors are available voltage and current.

 Nesting Parameter Sweeps with Multiple Items

To nest parameter sweeps with multiple parameter sweep items, assign the instance
name of the Parameter sweep item associated wih the inner sweep to the SimInstance
name [1] parameter of the Parameter sweep item associated with the outer sweep.

 Using SweepPlans to Perform Fine and Coarse Sweeps

The next figure below illustrates an example setup for using two SweepPlan controllers
(available in all the simulation palettes) to perform a fine sweep of noise figure versus RF
frequency, followed by a coarse sweep.

Note
This design, SweptRF_NF, is in the Examples directory under RFIC/Mixers_wrk. The results re in
SweptRF_NF.dds.

This simulation uses a Harmonic Balance Simulation controller (HB) to call a sweep plan,
and that sweep plan, in turn, calls a second sweep plan. A simulation controller cannot call
more than one sweep plan.

Advanced Design System 2011.01 - Using Circuit Simulators

32

Note
The following steps describe the design under discussion. Alter the details to suit your particular needs.

To use two SweepPlan controllers to perform a fine and a coarse sweep:

Use a VarEqn component (available from Component Palette List > Data Items >1.
Var eqn) to define all frequencies.
Using two SweepPlan controllers (available in all the simulation palettes), establish2.
two sweep plans-one for a fine sweep and one for a coarse sweep.
Use a Harmonic Balance Simulation controller (HB) to define the parameter to3.
sweep and reference a sweep plan.

 Example setup for using two sweep plans

The following topics illustrate this procedure in detail.

 Define Frequencies

Edit the VarEqn component on the schematic.1.
In the Select Parameter field, confirm that the following variables are defined by an2.
equation:

Fif (intermediate frequency) = 70 MHz. This is the noise frequency defined in
the Harmonic Balance Simulation controller (HB) (see below).
Frf (RF input frequency) = 1 GHz. This is the input frequency defined in the
Harmonic Balance Simulation controller (HB) (see below).
Flo = Frf - Fif. Flo is the frequency assigned to the P_1Tone component at the
LO input of the mixer.

Note
The simulator requires that all variables be initialized. Although a value of 0 MHz or 0 GHz is
sufficient to establish units for a local variable, leaving realistic units on the schematic allows a
meaningful simulation to be conducted even when those variables are not swept.

These equations are written in the field on the right of the box, with Variable or
Equation Entry Mode set to Name=Value.

Click Apply, then OK.3.

Advanced Design System 2011.01 - Using Circuit Simulators

33

 Establish Two Sweep Plans

From any simulation palette, select the SweepPlan controller and place two of these1.
in the Schematic window.
Edit the first SweepPlan (Plan1) as follows:2.

Sweep Type = Linear
Start = 300 MHz
Stop = 1 GHz
Step = 350 MHz
Select Next Sweep Plan, and enter Plan2 (to be established in the next step)
in the field below the option.

Edit the second SweepPlan (Plan2) as follows:3.
Sweep Type = Linear
Start = 1 GHz
Stop = 7 GHz
Step = 3 GHz
Because this is the last SweepPlan in this series, do not select Next Sweep
Plan or enter a plan name.

 Define Sweep Frequencies and Sweep Plan in the Simulation Controller

Under the Sweep tab of the Harmonic Balance Simulation controller (HB), establish1.
the following:

Parameter to sweep = Frf

Note
Variables entered into this field will appear in quotes on the schematic. If you enter a variable
directly on the schematic (in this case, as the right-hand side of the SweepVar statement in
the DC controller), you must surround the variable with double quotes.

Sweep Type = Linear
Use sweep plan is selected, and the entry in the field is Plan1. You can use the
pulldown menu at the right of the field to select the name of a SweepPlan
controller.
Other sweep parameter entries will be overridden by values in the SweepPlan
controller.
Finally, because this is a noise analysis, also select Nonlinear noise to enable
the analysis.

Click Apply, then OK.2.

 Launch the Simulation and Display Data

Launch the simulation. The following are Rectangular and List plots of noise figure:1.

 Additional Examples

An additional example of a swept-parameter simulation is found in the examples directory,
in RFIC/Mixers_wrk/networks. IMDLOSwp uses a ParamSweep controller to sweep LO
power in conjunction with harmonic balance simulation.

Advanced Design System 2011.01 - Using Circuit Simulators

34

 Recommendations and Tips
This section presents suggestions for using sweeps and improving the accuracy of results.

 Ensuring that Sweep Results are Displayed Correctly

Parameter sweeps in the time domain are remarkable only in the way that they affect the
adaptive time-step algorithm, which may have possible negative effects when results are
displayed in the Data Display window. If the Transient simulator is allowed to use its
adaptive time-step algorithm and Max time step is not specified by the simulation
controller, the simulator will probably produce results that have irregular data intervals.
This does not matter when you are simulating only versus time and not sweeping – that
is, when you are attempting to produce only a single trace for each nodal waveform, not a
family of traces.

The potential difficulty arises when the Data Display server attempts to display a family of
traces, each having different numbers of trace points and irregular spacings. Simply
stated, the data cannot be displayed. The Data Display server must have a rectangular
array of data. This means that all subtraces must have the same number of points, and
that the spacing between the points must be the same as that between the corresponding
points in other subtraces. The spacing can be irregular, as long as the distribution of
spacing along the x-axis is the same for all traces. The only way to be sure that the Data
Display server receives a neatly formatted, rectangular array of data is to specify a value
for Max time step. This is especially true of Monte Carlo simulations, which are essentially
statistical parameter sweeps.

 Controlling the Amount of Data Sent to the Dataset

Time-domain simulations generally take more time and produce more nodal data than do
comparable frequency-domain simulations. Hundreds (or even thousands) of time points
may be required to simulate the behavior of the circuit accurately. This makes it especially
important to minimize the number of time points and swept parameter values. You can
control the amount and kind of data sent to the dataset using the Output tab of each
analysis controller.

 Using Sweeps in Monte Carlo Analysis

 It is possible to use sweeps in Monte Carlo statistical analyses with the transient
simulator, to the extent that histograms can be generated. Yield percentage analyses are
not possible except through the following indirect method.

Note
Monte Carlo analyses are enabled through the use of the Yield and YieldOptim components in the
Optim/Stat/Yield palette (under their Parameters tab, enable Random variables to dataset, and establish
seed values as appropriate).

Yield percentages can be estimated if the pass/fail yield criterion can be expressed in
terms of node voltages and currents at individual time points.

Instead of plotting a histogram, plot the cumulative distribution function (CDF) using the
cdf() operator and equations. The CDF increases monotonically from 0 to 1. Insert two
markers onto the CDF trace at the limits of the pass/fail criterion. Then use the delta
marker mode to find the difference between them. The yield percentage is the difference
between the two markers, multiplied by 100. For example, suppose the response of a
circuit to a 1.0-V step with a 100-psec risetime is being plotted. The maximum risetime
desired from the circuit is 300 psec.

Ask for 100 Monte Carlo trials. Select the time point where the output voltage must be at
least 90% (perhaps t = 350 psec). Then plot the CDF multiplied by 100. Insert a marker
on the 90% value and another on the maximum value, then examine the difference. This
difference is approximately the yield.

Advanced Design System 2011.01 - Using Circuit Simulators

35

Monte Carlo statistical analyses can be regarded as a special type of parameter sweep in
which the parameter values are assigned randomly, rather than as a succession of
ascending values.

 SweepPlan Controller
The options listed in the following table describe the SweepPlan controller's parameters.
This controller sweeps a parameter which may be called by a ParamSweep controller or a
simulator. It is unitless, as the parameter it sweeps can be any parameter. In the table,
names used in netlists and schematics appear under Parameter Name.

 Sweep Plan Options

Setup Dialog
Name

Parameter Name Description

SweepPlan
Instance Name

 Enter the name of the SweepPlan controller. The default is
SwpPlan1.

Parameter Use this area in conjunction with the Add button to add
Start, Stop, and Step parameters to the schematic. Use the
Cut button to remove a parameter set, and Paste to copy
one that has been selected.

Sweep Type

 Single point Pt Enables simulation at a single frequency point. Specify the
desired value in the Parameter field.

Linear Enables sweeping a range of values based on a linear
increment. Click the Start/Stop option to select start and
stop values for the sweep, or Center/Span to set the center
value and a span of the sweep.

Log Enables sweeping a range of values based on a logarithmic
increment. Click Start/Stop to set start and stop values for
the sweep, or Center/Span to select a center value and a
span of the sweep.

Start/Stop
Start, Stop,
Step-size,
Pts./decade,
Num. of pts.

Start
Stop
Step
Dec
Lin

Select the Start/Stop option to sweep based on start, stop,
step-size or pts./decade, and number of points. Linear
sweep uses Step-size; Log sweep uses Pts./decade.
- Start-the start point of a sweep
- Stop-the stop point of a sweep
- Step-size-the increments at which the sweep is conducted
- Pts./decade-number of points per decade
- Num. of pts.-the number of points over which sweep is
conducted

Center/Span
Center, Span,
Step-size,
Pts./decade,
Num. of pts.

Center
Span
Step
Dec
Lin

Select the Center/Span option to sweep based on center
and span, step-size or pts./decade, and number of points.
Linear sweep uses Step-size; Log sweep uses Pts./decade.
- Center-the center point of a sweep
- Span-the span of a sweep
- Step-size-the increments at which the sweep is conducted
- Pts./decade-number of points per decade
- Num. of pts.-the number of points over which sweep is
conducted

Note: Changes to any of the Start, Stop, etc. fields causes the remaining fields to be recalculated
automatically.

Increasing
Order

Reverse=no Start and progress through sweep from lower to higher
values.

Decreasing
Order

Reverse=yes Start and progress through sweep from higher to lower
values.

Next Sweep
Plan

UseSweepPlan=yesSweepPlan= Use this field to enter the name of the sweep plan
(SweepPlan) to be performed after the current plan.

 Parameter Sweep Controller

This section describes the fields of the Parameter Sweep controller tabs. In the following
tables, names used in netlists and schematics appear under Parameter Name.

Advanced Design System 2011.01 - Using Circuit Simulators

36

 Parameter Sweep Options

Setup Dialog
Name

Parameter
Name

Description

ParamSweep
Instance Name

 Enter the name of the sweep controller. The default is Sweep1.

Parameter to
sweep

SweepVar Use this area to select from a variety of sweep types and other parameters.
In any parameter sweep, selecting a sweep start point as close as possible to
the convergence point and varying the parameter gradually shortens
simulation time. This yields better estimates for the next simulation, and
achieves convergence more rapidly than if the parameter were changed
abruptly.

Parameter sweep

 Sweep Type

 Single point Pt Enables simulation at a single frequency point. Specify the desired value in
the Parameter field.

Linear Enables sweeping a range of values based on a linear increment. Click the
Start/Stop option to select start and stop values for the sweep, or
Center/Span to set the center value and a span of the sweep.

Log Enables sweeping a range of values based on a logarithmic increment. Click
Start/Stop to set start and stop values for the sweep, or Center/Span to
select a center value and a span of the sweep.

Start/Stop
Start, Stop,
Step-size,
Pts./decade,
Num. of pts.

Start
Stop
Step
Dec
Lin

Select the Start/Stop option to sweep based on start, stop, step-size or
pts./decade, and number of points. Linear sweep uses Step-size; Log sweep
uses Pts./decade.
- Start-the start point of a sweep
- Stop-the stop point of a sweep
- Step-size-the increments at which the sweep is conducted
- Pts./decade-number of points per decade
- Num. of pts.-the number of points over which sweep is conducted

Center/Span
Center, Span,
Step-size,
Pts./decade,
Num. of pts.

Center
Span
Step
Dec
Lin

Select the Center/Span option to sweep based on center and span, step-size
or pts./decade, and number of points. Linear sweep uses Step-size; Log
sweep uses Pts./decade.
- Center-the center point of a sweep
- Span-the span of a sweep
- Step-size-the increments at which the sweep is conducted
- Pts./decade-number of points per decade
- Num. of pts.-the number of points over which sweep is conducted

Note: Changes to any of the Start, Stop, etc. fields causes the remaining fields to be recalculated
automatically.

Use sweep plan SweepPlan To use a sweep plan that you have defined and named, select this option and
enter the name of the plan in the field.

 Simulations Tab

Setup Dialog
Name

Parameter Name Description

ParamSweep
Instance Name

 Enter the name of the sweep controller. The default is Sweep1

Simulations to
perform

SimInstanceName[n] Use this area to enter the name(s) of the simulation(s) you wish to
perform. As an example, entering DC1, AC1, and HB3 in the setup
dialog box causes the following to appear in the schematic: Simulation
1="DC1", Simulation 2="AC1", and Simulation 3="HB3".
The simulation controller instance name(s) entered should include
double quotation marks ("name") on the schematic. The quotation
marks are inserted automatically when you enter a name using the
dialog box. You must include the quotation marks if you enter names
directly on the schematic. If the quotation marks are missing, the
simulation will not work.
Simulations will be performed in the sequence listed.

 Display Tab

For information on the Display tab, which enables you to control the visibility of simulation
parameters on the Schematic, see the topic Displaying Simulation Parameters on the
Schematic (cktsim).

Advanced Design System 2011.01 - Using Circuit Simulators

37

 Using Circuit Simulators for RF System
Analysis
 The steady-state simulation of RF/IF subsystems in the frequency domain is achieved in
Advanced Design System through the use of various circuit and system simulation
components, as well as through a variety of measurement functions that can be applied to
simulation data. Budget, spur (spurious signal), noise, and group delay data are typical
objectives obtainable with these components, and a sweep analysis is a common way to
obtain system response at a variety of frequencies, power levels, and other operating
conditions.

For details refer to the following related topics, including a variety of examples:

Applicable Simulation Components lists the simulators that are best suited for RF
system analysis.
Applicable Measurements lists the types of measurements that work well with RF
system analysis.
Fundamentals of Using Circuit Simulators for System Analysis illustrates a typical RF
system setup that can be used with circuit simulation.
Budget Analysis gives an overview of budget analysis, describes several examples,
and discusses limitations in Budget Analysis Capabilities.
Using IMT-Based Mixer Models in Spurious Signal Analysis describes how to use the
IM tables and behavioral mixer models for generating spurious signals and the
approach to simulating spurious signals.
System Noise Analysis is an overview of contributors to system noise and how they
are treated in a simulation.

Note
The appropriate simulator licenses are required to run simulations examples, i.e. a Harmonic Balance
simulation requires the Harmonic Balance simulator license (included in all Circuit Design suites except the
RF Designer suite.) You may build the examples without the appropriate license, but will simply be unable
to run the simulations.

 Applicable Simulation Components
The circuit simulation components that can be used for system analysis are the AC, S-
Parameter, Harmonic Balance, LSSP (including the use of the P2D Simulation component
to generate power-dependent S-parameters), and XDB components. This topics assumes
that you are familiar with how to use those simulators to analyze circuits and display data.
This section presents just a few of the RF system objectives that can be obtained.

By selecting the Harmonic Balance Simulation (HB) component in the Simulation-HB
palette, you can achieve the following:

Perform a budget analysis to determine the signal and noise performance for
elements in an RF system network. This includes measuring system performance at
an element's input or output, and therefore finding the degree to which an element
contributes to the degradation of system performance.
Perform a sweep analysis to determine the network's port-to-port performance with
respect to a swept parameter such as frequency or power.
Perform a spurious-signal analysis to determine the network's spurious spectral
tones, where all intermodulation products are due not only to mixer signal input and
local oscillator mixing, but also to the nonlinearities of amplifiers.
Use the Perform Budget simulation option to obtain currents and voltages at named
nodes throughout the system. Use budget measurements to postprocess the
resulting data.

By selecting the AC Simulation component (AC) in the Simulation-AC palette, you can
achieve the following:

Use the Enable AC Frequency Conversion option to do a small-signal analysis in
systems containing freq.
Perform a small-signal noise analysis at the IF at a variety of nodes.
Use the Perform Budget simulation option to obtain currents and voltages at all pins
of each element in the system. Use budget measurements to postprocess the
resulting data.

Advanced Design System 2011.01 - Using Circuit Simulators

38

By selecting the S_Param (SP) component, in the Simulation-S_Param palette, you
can achieve the following:

Determine linear scattering parameters (S-parameters).
Use the Group delay option to analyze the group delay from the input to the output
of the system.

By selecting the LSSP simulation component (LSSP), in the Simulation-LSSP palette,
you can achieve the following:

Perform a large-signal sweep of, for example, gain versus frequency and power, to
determine the effect of gain compression on S-parameters.

By selecting P2D Simulation component (P2D), in the Simulation-LSSP palette, you
can achieve the following:

Create a system-level amplifier model by generating a power-dependent S-parameter
file for a circuit-level amplifier design.

 Applicable Measurements
From among the many measurements that are available, a variety of those specific to
system analysis are found in their respective simulation palettes. The following table lists
some of the system-applicable measurements that are available on the schematic page,
and shows the palettes in which they can be found:

 Measurements for System Analysis

Palette Measurement Description

Simulation-HB BudLinearization Linear budget simulation

Pspec Power frequency spectrum

Ip3in Input third-order intercept point

Ip3out Output third-order intercept point

CarrToIM Ratio of carrier signal power to IMD power

SFDR Spurious-free dynamic range

SNR Signal-to-noise ratio

Simulation-LSSP BudLinearization Linear budget simulation

GainComp Gain compression

PhaseComp Phase compression

Simulation-S-Param PwrGain Power gain

MaxGain Maximum available gain

NsPwrRefBW Noise power in a reference bandwidth

These measurements and others are placed in the Schematic window and used in
conjunction with a simulation.

 Fundamentals of Using Circuit Simulators for System
Analysis

The following figure shows a block diagram of a typical RF system. Such a system often
consists of many interconnected linear and nonlinear "black-box" elements representing
amplifiers, filters, mixers, modulators, demodulators, transmission lines, and radio links,
as well as source and load matching elements. Each black box can in turn be composed of
many circuit elements.

At the system simulation level, the signal transformation property of each black box is
known, but the internal circuit characteristics of the elements need not be of concern.

Advanced Design System 2011.01 - Using Circuit Simulators

39

 Block diagram of a typical RF system

The following figure shows an example RF system as represented on the schematic page.
A variety of applicable simulation components and measurements are made available on
the example schematic; turn them on and off as needed.

Note
This design, RF_SYS1, can be found in the examples directory under Tutorial/SimModels/networks. The
results of the simulation can be found in RF_SYS1_spectra.dds.

 Example

The system depicted in the RF_SYS1 uses a single upconversion stage and two
downconversion stages. The RF frequency is 300 MHz, as defined in the P_1Tone source
PORT1. The RF input power level is -10 dBm. This tone sums with 17.7 GHz from the first
LO source, SRC1, to produce (among other tones) an IF of 18 GHz when mixed by the
first upconversion mixer, MIX1. MIX1 and the other mixers in this example use the
MixerIMT component, which relies on intermodulation tables to produce spurs. The
parameter IMT_File references the table used for this component. For a discussion of IMT
files as they are used here, refer to Using IMT-Based Mixer Models in Spurious Signal
Analysis.

 Example RF system

The Chebyshev filter BPF1 (note the passband BWpass and quality factor Qu) then selects
and passes the 18-GHz signal to amplifier AMP1, where the signal receives 20 dB of gain
at a phase of 0 degrees. LINK1 applies both a transmitter and a receiver gain of 30 dB
and adds the loss that would be incurred over a path length of 1 km. BPF2, another
Chebyshev filter, receives the signal and passes it through to AMP2, which applies 30 dB
of gain at 0 degrees phase.

MIX2 combines the 18-GHz signal with 16.5 GHz from the LO, SRC2, to produce (among
other tones) a 1.5-GHz tone at the mixer's output. This time the signal is passed through

Advanced Design System 2011.01 - Using Circuit Simulators

40

a much narrower (note the high Q) Butterworth filter to a low-gain amplifier, AMP3. From
there the signal proceeds to a final downconversion stage, MIX3.

The signal input to MIX3 combines with 1.2 GHz from the LO at SRC3 to produce (among
other tones) 300 MHz, the frequency originally inserted into the system. This is filtered by
BPF4 (note the very high Q) and amplified by AMP4. Finally, a 50 ohm load at the output
terminates the signal path.

Later we will revisit this design and the results of simulations on it.

 Budget Analysis
Budget analysis determines the signal and noise performance for elements in the top-
level design. Therefore, it is a key element of system analysis.

Budget measurements are performed upon data generated during a special mode of
circuit simulation. AC and HB simulations are used in budget mode depending upon if
linear or nonlinear analysis is needed for a system design. These measurements show the
performance at the input and output pins of each element of the system at the top-level
design. This enables the designer, for example, to adjust the gains or to reduce the
nonlinearities of various components. These measurements can also indicate the degree to
which a given component can degrade overall system performance.

Budget measurements include power gain, incident and reflected powers, noise figure,
VSWR, and a variety of nonlinear measurements, such as SNR and gain compression.

There are various ways to obtain budget data:

Use the Perform Budget simulation option (available in the HB and AC simulation
dialog boxes). This option is required if budget measurements are to be used
following a simulation (see below). Alternatively, the flag OutputBudgetIV can be set
to Yes.
Use the budget measurement components, available in the AC and HB simulation
palettes. By placing one or more of the budget measurement components on the
schematic and by selecting the required options, budget data can be generated.
Add a budget path to your schematic using Simulate > Generate Budget Path. Budget
data will be generated for the specified portion of the circuit. This is used in
conjunction with other measurement components.
Use Measurement Functions, available in Data Display windows as functions that can
be input directly into an equation. First, the appropriate data must be referenced in
the default dataset.
Use the BudLinearization Component, available in the Harmonic Balance, LSSP, and
XDB simulation palettes. This component, which must be used in conjunction with
one of the harmonic balance simulators, provides information regarding the nonlinear
effect of circuit elements.

 Using the Perform Budget Simulation Option

Two simulators provide a budget simulation option:

In the Harmonic Balance Simulation component (HB), select the Params tab, then
select Perform Budget simulation.
In the AC Simulation component, select the Parameters tab, then select Perform
Budget simulation.

 Using Budget Measurement Components

The budget measurement components are available in the AC and HB Simulation palettes,
and must be used by selecting the required options. A budget data can be generated by
placing one or more of these budget components in schematic.

The budget results at the terminal(s) of each element are sorted in ascending order of the
component names. These component names are attached to the budget data as additional

Advanced Design System 2011.01 - Using Circuit Simulators

41

dependent variables.

 Adding a Budget Path

You can generate budget results over a specified path in your circuit using Simulate >
Generate Budget Path. You use this in conjunction with other budget measurement
components, by replacing the pin with the name of the budget path. First specify the path,
then modify your budget measurements.

To specify a path:

From the menu bar, choose Simulate > Generate Budget Path.1.
The names of the components in the circuit appear in two lists. Set the start of the2.
path by selecting the name of a component in the left list.
Set the end of the path by selecting the name of a component in the right list.3.
Click Generate. To verify that the path is correct, click Highlight to highlight the4.
path on the schematic. Click Clear to erase the highlighting.
If you are satisfied with the path, click Close.5.
Search the schematic for a measurement called BudPath, which was created when6.
you invoked the command Generate Budget Path. You can change the name of the
equation if desired. The default name is budget_path.

To modify your budget measurements:

Select a budget measurement and double-click to edit it.1.
Where the pinNumber is specified in the budget expression, replace it with the name2.
of the budget path measurement.

Notes
In budget expressions supporting the alternative syntax using SourceName as the first parameter,
don't use the SourceName parameter to specify the budget path. You should still replace the
pinNumber variable with the budget path measurement name.

For the bud_gain expression, you can include the budget path measurement name only by using the
alternative syntax as shown here:

x=bud_gain("SourceName",SrcIndx,Zs,Plan,budgetPath)

 Using Budget Measurement Functions

The budget functions can also be entered by means of the Eqn component in the Data
Display window. The Perform Budget simulation option must be selected prior to a
simulation before measurement functions can be used following the simulation.

The budget function can refer only to the default dataset, that is, the dataset selected in
the Data Display window.

You can use a variety of budget-related measurement functions in the Equation entry field
in the Data Display window. These include the following:

bud_freq bud_gain bud_gain_comp bud_gamma

bud_ip3_deg bud_nf bud_nf_deg bud_noise_pwr

bud_pwr_inc bud_pwr_refl bud_snr bud_tn

bud_vswr

Note
For details on the above and other measurement functions, open a MeasEqn component dialog box and
click Help.

 Using the BudLinearization Component

This component is available in the Simulation-HB, Simulation-LSSP, and Simulation-XDB
palettes. It may be used in conjunction with the Harmonic Balance, LSSP, or XDB analysis
controllers. The P2D controller currently does not support budget analysis. To use the

Advanced Design System 2011.01 - Using Circuit Simulators

42

BudLinearization component, place the component in the schematic and edit it to
reference the simulation component to be used, as well as the circuit components that are
to be linearized. If no component is specified, all the components in the top-level design
are linearized one at a time.

The BudLinearization component first performs a regular harmonic balance simulation, and
then looks at the DC operating point for each nonlinear system component in turn,
linearizing the response of that component while the responses of the remaining nonlinear
system components remain nonlinear. If a system component is in a subnetwork, the
entire subnetwork will be linearized.

The results of BudLinearization analysis are sorted in ascending order of the names of the
linearized components. LinearizedElementIndex, an integer independent variable, is
attached to the data as an additional sweep variable. The first point corresponds to the
results of the regular harmonic balance simulation when none of the components is
linearized. Another variable, LinearizedElement, that contains the names of the linearized
components is also generated.

Note
The inclusion of the BudLinearization component in conjunction with a Harmonic Balance simulation causes
N+1 harmonic balance simulations to be run, where N is the number of nonlinear components to be
linearized. Consequently, such a simulation will take N+1 times as long.

 Budget Examples

This section includes these budget examples:

Calculating Gain and Noise Figure shows how to determine the power gain and noise
figure budgets for a typical RF System. It uses the AC simulator and measurement
functions.
Calculating Spurious Signals and TOI shows how to use the Harmonic Balance
simulator to analyze a PCS receiver.
Obtaining Budget Incident Power and Gain illustrates how to use budget
measurement functions and how to display results.
Obtaining Group Delay Data uses the S-parameter simulator and linear sweep to
calculate group delay data.

 Calculating Gain and Noise Figure

The following figure illustrates one way to obtain budget gain and noise figure data.

Note
The design Linear_Budget is in the Examples directory under Com_Sys/Linear_Budget_wrk. The results
are in SchematicMeasurements.dd s.

Advanced Design System 2011.01 - Using Circuit Simulators

43

 Using the AC simulator to obtain budget gain and noise figure

With its single mixer stage, this example provides a less complex view of the issues raised
in RF_SYS1.

Hint
To make it easy to observe the gains and losses contributed by individual components along the signal
path, label them so that a List plot sorts them alphanumerically. In this case they have been labeled
b1_BPF1, b2_AMP1, and so on.

This example uses the AC Simulation component, with parameters set as follows:

Under the Noise tab, Calculate noise has been enabled. The noise nodes (the input of
the first filter and output of the final filter) has been labeled "Vin" and "Vout" and
have been added to the list of Nodes for noise parameter calculation. The Noise
contributors mode is set to Sort by name.
Under the Parameters tab, both Enable AC Frequency Conversion and Perform
Budget simulation have been selected.
Under the Frequency tab, the frequency is set to 1.960 GHz.

Note
In nonlinear noise analyses, it is recommended that the Options component be used to establish a global
simulation temperature of 16.85 degrees Celsius . This can be done by editing Temp=16.85 in the
Schematic window, or by selecting the Misc tab and editing Simulation temperature to that value.

Add budget measurements to the schematic:

From the Simulation-AC palette, add BdGain (budget gain), BudNF (budget noise
figure), BudNFd (budget noise figure degradation), and BudPwrI (budget incident
power).
Double-click the budget noise figure degradation component to edit it. Edit the
equation by replacing " term2 " with " b6 " and changing " vout " to " Vout". Note
that b6 is the name of the output termination component.

To display all of the Budget measurements at once, open the Data Display
SchematicMeasurements.dds. This will include gain, incident power, noise figure and noise
figure degradation by component, both in tabular and graphic form. Ensure that the
default dataset name is set to the name of the design you have simulated. The results of
the simulation appear as follows:

Advanced Design System 2011.01 - Using Circuit Simulators

44

The first listing shows the losses and gains, in dB, contributed by the various components.
For example, the first amplifier has a nominal insertion loss (IL) of 5 dB at 1.960 GHz, but
here the figure is -5.239 dB – the result of reflection and thermal loss. Try lowering the
reflection parameters S11 and S22 to approximate ideal values (simply add zeros) to

observe the bud_gain figure approach 5 dB. The second listing shows the incident power
at the input of each component. The third and fourth listings show the noise figure and the
noise figure degradation at pin 1 of each component, respectively. For more discussion of
noise analysis, refer to System Noise Analysis.

Budget measurements may also be performed entirely within Data Display window by
adding equations that operate on the current and voltage data provided by the AC
simulation. The Data Display DataDisplayMeasurements show an alternative way of using
the budget functions, instead of adding measurements to a schematic, after a simulation
you can get the same calculations by adding equations to the Data Display page.

 Calculating Spurious Signals and TOI

The following figure illustrates traces of the spectral tones (spurious signals) for various
nodes of the design RF_SYS1. For a detailed discussion of mixing products, refer to Using
IMT-Based Mixer Models in Spurious Signal Analysis.

Advanced Design System 2011.01 - Using Circuit Simulators

45

 Spectral data for RF_SYS1

The following figure illustrates a setup for obtaining third-order intercept.

Note
The design PCS_Rx_TOI_test is in the Examples directory under Com_Sys/RF_System_wrk. The results
are in PCS_Rx_TOI_test.dds.

 System TOI example

Two sources at the input define two closely adjacent tones, as can be found under typical
conditions of communications interference. (A P_nTone component could also be used.)
The source at the top of the schematic, identified as PORT1, can be used to test the
degree to which the outgoing signal leaks back into the IF stage.

Advanced Design System 2011.01 - Using Circuit Simulators

46

Note
CarrToIM and IP3out measurement components have been used to define those measurements for the
lower and upper intermodulation products (selected by means of the mixing indices vector) that will be
passed by the filters. IP3out must reference 50 ohms. Also, although there are six apparent source tones
in the design (at 1880, 1880.3, 1960, 1960.3, 2048, and 84 MHz), only five tones are independent.

A plot of the IF output, VOUT_IF, appears as follows:

The mixing products of interest center around 6 MHz, as determined by the final filters.
Note that only one of the third-order intermodulation products (at 6.06 MHz) is safely
below about -75 dB. The spur at 5.97 MHz indicates that the filter's bandwidth needs to be
adjusted.

The listing below is a plot of the Mix data output, which produces mixing indices vectors.
Highlighted are the coefficients of those frequency components whose product resulted in
6.030 MHz
(0 * 1880 + 1 * 94 - 1 * 88 + 1 * 0.03 + 0 * 1960 = 6.03 MHz).

The listing below, of the four equations on the schematic, shows the relationships, in dB,
of the various products. Note that the difference between the carrier and the lower
intermodulation product (the second and first columns, respectively) is approximately 26
dB.

The fundamental of the product in the first column is defined by

0 * 94 + 1 * 94 - 1 * 88 + 0 * 0.03 + 0 * 1960 = 6 MHz

and its intermodulation product by

0 * 1880 + 1 * 94 - 1 * 88 - 1 * 0.03 + 0 * 1960 = 5.97 MHz.

The fundamental of the product in the second column is defined by

0 * 1880 + 1 * 94 - 1 * 88 + 1 * 0.03 + 0 * 1960 = 6.03 MHz

and its intermodulation product by

0 * 1880 + 1 * 94 - 1 * 88 + 2 * 0.03 + 0 * 1960 = 6.06.

 Obtaining Budget Incident Power and Gain

Advanced Design System 2011.01 - Using Circuit Simulators

47

The following figure illustrates the use of the bud_gain, bud_snr and bud_pwr_inc
measurement functions.

Note
The design IQ_mod_bud is in the Examples directory under Com_Sys/MultiChan_NL_Budget_wrk. The
results are in IQ_BudgetSchematic.dds and IQ_Budget.dds.

It is similar to the preceding example, with the exceptions that only a single tone is
inserted at the input, and the transmitter tone has been replaced by a terminating
resistor.

 Using bud_gain, bud_snr and bud_pwr_inc

To display all of the Budget measurements at once, open the Data Display
IQ_BudgetSchematic. This will include frequency plan, gain, signal-to-noise ratio and
incident power in tabular and graphic form. Ensure that the default dataset name is set to
the name of the design you have simulated. The results of the simulation appear as shown
here:

Advanced Design System 2011.01 - Using Circuit Simulators

48

The first listing shows the fundamental frequencies for plan 1 and the power gain from the
input port to pin 1 of each component. The second listing (top-left corner) shows the
signal-to-noise ratio at pin 1 of each component. The last listing (bottom) shows the
incident power at the input of each component at the fundamental frequencies in plan 1
through the system. In this example, note the imbalance at the power combiner input due
to the nonlinearity of b3_AMP2.

Note
Certain measurements (such as bud_gain), although they derive data for a single tone, will output results
for all harmonics.

The Data Display IO_Budget shows an alternative way of using the budget functions. The
budget measurements are performed within the Data Display window by adding equations
that operate on the current and voltage data provided by the HB simulation.

 Obtaining Group Delay Data

The following figure illustrates the use of the S-parameter simulator in obtaining group
delay data. For more information about group delay, refer to the topics Calculating Group
Delay (cktsimsp) and Group Delay (cktsimsp).

Note
The design Linear_Sweep is in the Examples directory under Com_Sys/RF_Sys_wrk. The results are in
Linear_Sweep.dds.

In the S-parameter Simulation component a linear sweep centers closely around the
center frequency of the first filter. Under the Parameters tab, the Group delay option has
been selected. In addition, Enable AC Frequency Conversion has been selected, and S-
parameter freq. conv. port has been set to 1, the input port.

Advanced Design System 2011.01 - Using Circuit Simulators

49

Note
The frequency conversion port must be the number of the input port.

 Using the S-parameter simulator to obtain group delay data

The following is a plot, in dB, of S(2,1), showing the response of BPF2.

Below, a plot of the function phase(S(2,1)) shows wrapped phase versus frequency. This
is essentially a compressed view of the response, as the display is normalized to
accommodate the ±180-degree variations without unnecessary repetition.

Finally, a plot of the function delay(2,1) (the delay at the output port with respect to the

Advanced Design System 2011.01 - Using Circuit Simulators

50

signal at the input port) shows the shift in phase in the filter's passband (below).

 Budget Analysis Capabilities

The topics in this section provide details about specific areas of the budget analysis
feature, including additional instructions about setting up budget measurements.

The existing budget analysis is a collection of 14 predefined measurement functions
intended to provide insight into the propagation of circuit characteristics along a set of
selected locations throughout a circuit. These measurements are implemented as AEL
functions. The following table lists the currently available budget functions with a
summary of their parameters and usage.

These AEL functions are available for use from two locations. In the Schematic window
you can insert templates for them from a simulation palette. In the Data Display window
you must manually enter and edit the functions. Using the Functions Help button in the
Equations dialog box helps with pasting a template from the documentation.

 Budget Measurement Functions

Advanced Design System 2011.01 - Using Circuit Simulators

51

Function # of
Forms

Used in # of
Vars

Source and Zs in 3
Vars††

Freq
Plan #

Pin # Zref SimInst

AC HB† Budget
Path

Utility

 bud_freq 2 X X 3 X X X

Power Gain

 bud_gain 2 X X 6 X X X X

 bud_gain_comp

2 XS 7 X X X X

Intercept

 bud_ip3_deg 1 XL 5 X

Noise

 bud_nf 2 X 7 X X X

 bud_tn 2 X 7 X X X

 bud_nf_deg 2 X 8 X

 bud_noise_pwr

1 X X 4 X X X X

 bud_snr 1 X X 3 X X X

Basic

 bud_gamma 1 X X 4 X X X X

 bud_pwr††† 1 X X 3 X X X

 bud_pwr_inc 1 X X 4 X X X X

 bud_pwr_refl 1 X X 4 X X X X

 bud_vswr 1 X X 4 X X X X

† "S" denotes the use of a sweep. "L" denotes the use of BudLinearization.
†† Functions include three variables: either vIn, iIn, Zs, or SourceName, SrcIndx, Zs.
††† Available only in the Data Display window.

 Budget Analysis calculations are based on both voltages and currents

The internal evaluation of budget functions such as bud_gain is based on both voltages
and currents, and thus is correct. This may not be obvious when setting up the budget
analysis tasks.

 Budget Analysis setup requires close attention

Setting up budget analysis measurements requires close attention to the following areas:

The AEL function templates are not always complete and you may need to focus on
their arguments to achieve proper use of those functions.
Contextual meaning of the multi-purpose syntax and the effect on function
arguments.
There is more than one place where the same parameter or flag must be set
simultaneously so the budget calculations can be invoked, or properly carried out.

 Budget measurements work with only AC or HB simulations

The AC and HB simulations are typical for many traditional budget measurements. The
budget analysis methodology is not extended to other types of analyses, and should be
used only with AC and HB simulations.

 Budget measurements may not work with both AC and HB simulations

The table above shows the currently available budget measurements. Of the 14 functions,
all but one (bud_pwr) are available in the Schematic window from the AC or HB palette,
or from both. All 14 functions are available in the Data Display window. It is important to
verify which simulator a particular function can work with. A common misconception is, for

Advanced Design System 2011.01 - Using Circuit Simulators

52

example, that the bud_nf function works with Harmonic Balance. Though that function is
not available on the HB simulation palette, it can be added to the Data Display window.

 Different AC and HB usage of functions that can work with both simulations

Functions that are designed to work with both AC and HB simulations, such as bud_gain,
require different handling of their input arguments for those different simulations. When
editing AEL function arguments, it is important that you verify the syntax for the desired
simulation; for details see Measurement Expressions (expmeas).

 HB Budget Analysis needs a frequency plan

When different frequencies are present at a specific circuit location, such as at the output
of a mixer with both upper and lower side bands, the budget measurements are organized
according to frequency plans. A frequency plan specifies the measurement frequency for
each location. The plan number is a required input in harmonic balance budget analysis.

 Frequency plans are internally generated

Frequency plans determine what frequencies are to be monitored at various locations.
ADS tries to determine frequency plans for the user; however, for some circuits, ADS
cannot generate a frequency plan. In these situations, ADS displays an error message that
a plan cannot be generated which interrupts/disables any budget calculations.

For example, a feedback loop over a mixer in circuits such as AGC leads to conflicting
frequency values for the mixer output. As a result the frequency plan is not generated,
and, consequently, no budget measurements are available.

In cases when the frequency plans are generated, you may still face a problem since it is
not known up-front what frequencies are present in a specific plan. That information
becomes available after the simulation is completed. Therefore, if an incorrect plan had
been selected in the schematic, the circuit may have to be re-simulated. For more
information about frequency plans, see Budget Measurement Analysis (expmeas).

 Common issues about Budget Noise Figure

The Budget Noise Figure function (bud_nf) is one of the most popular budget
measurements. Though the bud_nf function is formally available only for AC simulations,
it may still, however, appear as functional for HB simulations. You must carefully interpret
any results. For example, there is no argument provided for the frequency plan. As a
result the calculations are based on default values. In general, the results reported by
bud_nf may not be meaningful, and you should not use bud_nf for HB simulations.

The second expectation is that the function would calculate partial noise figures. The term
partial would mean that, for a specific circuit location, the function would return the
standard NF of the two-port defined between the source and the location, or the two-port
defined between the location and the output. In order to carry out such calculations, ADS
would have to break the connections and create the corresponding two-port. Such an
interpretation might be possible for cascaded circuits; ADS, however, is a general circuit
topology tool and no such assumption can be made.

 Budget Noise Figure is really a reformulated signal-to-noise ratio

The bud_nf function calculates quantities that could be termed as internal noise figures.
What is presented as a noise figure at a location is actually the signal-to-noise ratio
decrement from the location to the output that is normalized with respect to (subtracted
from) the overall (from the input to the output) noise figure.

Advanced Design System 2011.01 - Using Circuit Simulators

53

Example
Consider a circuit with four components selected for budget path, with the last one being the load. If the
function bud_snr reported 60, 54, 50, and 45 signal-to-noise ratios and if the overall NF = 17, then the
function bud_nf would report 2, 8, 12, and 17 (all in dB).

As such, the function bud_nf does not provide any additional useful information with
respect to the function bud_snr.

The calculated signal-to-noise ratio for an internal location is an in-circuit measurement. It
combines the noise contributions coming from noise sources in the entire circuit, for
example in a cascade from both to the left and to the right. Therefore, such internal noise
figures do not represent the standard notion of NF, that of noise added by a stage.

 Using the pinNumber argument in budget functions

The pinNumber argument can assume one of the following values:

1 selects pin 1 of the component (all components)

2 selects all the pins of the component (all components)

budget_path_name typically selects pin 2 (pin 1 for the source or the Term components) and only path
components are reported

The default value of 1 leads to a budget measurement reporting scheme that is not
obvious, and requires closer examination. A measurement, such as gain, reported for a
component refers to signals before the component. As such, it may not include the full
contribution of that component. For example, if that component is an amplifier whose
input impedance is infinite, the corresponding current (and power) at pin 1 is zero. If the
results were reported for pin 2 then the amplifier gain would be included in the budget
power gain reported for that amplifier, but for pin 1 it is not. This is correct operation.

 Using the SrcIndx argument in budget functions

The SrcIndx is described as "the frequency index that corresponds to the source frequency
to determine which frequency to use from a multi-tone source as the reference signal".
You may find it difficult to figure out how to determine a proper value for that argument.

The actual meaning of this argument is the index of the desired input (reference)
frequency as determined internally by ADS: all spectral components (harmonics and
intermodulation products) are ordered starting from DC to the highest frequency. The DC
component as the first one corresponds to zero index.

The following example explains the situation. Let one of the fundamental source
frequencies be named Upper_Freq in a VAR block and assume a value of 1.98805 GHz. We
want the budget gain to be calculated with respect to that input frequency. If, after
simulation, we display the array freq in the Data Display window and we find the
frequency in question as the 18th entry, then the index, counted from 0, is 17. Thus, we
can define the bud_gain function with SrcIndex = 17, as

BG = bud_gain("PORT1",17,....)

If we wanted to define the function up-front in the Schematic window, we would not know
that value. A solution to such a problem is to use the find_index function as

BG = bud_gain("PORT1", find_index (freq, 1.98805e9),....)

BG = bud_gain("PORT1", find_index (freq, Upper_Freq),....)

The second approach could be more useful if a change to the actual value is possible.
However, an even more flexible way is to indicate which fundamental is of interest as in
the following scheme

BG = bud_gain("PORT1", find_index (freq, indep(mix(freq, {0, 1,

0}))),....)

But, even this approach is not general enough. For instance, it may become invalid or
incorrect if the fundamental frequencies in the HB controller are rearranged.

Advanced Design System 2011.01 - Using Circuit Simulators

54

 Budget Path - how to use it effectively

Budget path is generated automatically by choosing Simulate > Generate Budget Path,
then selecting the input and the output ports (components). The name of the function
thus generated can then be specified in place of the pinNumber variable (, , ,
budget_path_name, , ,) - if one exists.

For a few of the budget functions there exists an undocumented feature of passing the
budget path name via the SourceName argument, which is, for example, the first
argument in the bud_gain function. This is not a recommended way of using budget path.

Finally, you can deal with any insufficiencies of the automatically generated budget path
by directly editing the budget path measurement equation. The terminal numbers can be
changed, components can be dropped or added, as desired, as long as legitimate
component instance names at the highest level of the hierarchy are used. Also, more than
one budget path, each with a different budget_path_name, can be defined using the Copy
feature in the Schematic window.

 Mixer2 and MixerIMT2 components issues

Do not use these components in conjunction with HB budget analysis.

These two components are SDD-based. Thus, the frequency plan generation process in
budget HB has no knowledge that a frequency conversion takes place in either of the two
components. This leads to a conflict, and budget calculations are not carried out. The two
explicit mixer components Mixer and MixerIMT will not cause the frequency plan
generation to fail. Please note that MixerIMT is not available from the palette, but can still
be inserted into the circuit by typing its name in the Component History field.

 Clipped values in bud_nf and bud_tn

Under some circumstances, the software clips the values returned by bud_nf to 0, and by
bud_tn to 290 K. This is usually set for the input port, regardless of the value of the
reverse signal to noise ratio. See Budget Noise Figure is really a reformulated signal-to-
noise ratio. This may be misleading since it creates an impression of noiseless stages in
situations when the designer knows they are not.

 Contextual meaning of input parameters: Beware of short syntax form

Some functions are documented with a long and a short syntax form to choose between.
You must be very careful when using either form.

The differences between the forms are not only in the meaning of individual parameters,
but also in the type of the values entered: strings, real or integer constants, and whether
they are enclosed in the quotation marks or not. In general, instance names are strings
surrounded by quotes, while variable names are strings entered without quotes.

Most of the functions can be formulated with a truncated set of arguments. The
arguments that are not listed will assume default values. For example, for bud_gain, the
set of six arguments can be truncated as much as necessary that still leaves any required
arguments, which is just the first one in AC, or the first four in HB. Furthermore, if an
input parameter such as the frequency plan is required, as it is in bud_gain in HB, the
short syntax form does not mean a change in the location of that parameter. If necessary,
empty (default) parameters must be entered by means of commas, as in the following
example

BG = bud_gain("PORT1",17,,1)

Additionally, the interpretation of some arguments may be contextual. This is, for
example, the case in bud_gain where the user can enter either

Advanced Design System 2011.01 - Using Circuit Simulators

55

vIn the name of the dataset variable for source voltage

iIn the name of the dataset variable for source current

or

SourceName the instance name of the source, in quotes

SrcIndex the index of the source frequency (see above)

Take special note of the fact that for bud_gain in AC the SrcIndex is irrelevant, so that the
short syntax form can actually consist of just one parameter SourceName. However, if vIn
and iIn are used, both are needed.

Nevertheless, if SourceName is used, and you want to use the budget path, then the
correct argument count must be preserved, as in the following example

BG = bud_gain("PORT1",,,,budget_path_name)

Finally, for the bud_nf_deg function the short syntax form is indeed different from the
regular form: the output port instance name (in quotes) takes the place of the second
argument, and the output node name (also in quotes) takes place of the third argument.

 Using IMT-Based Mixer Models in Spurious Signal
Analysis
Signal generation or frequency translation achieved within non-linear elements such as
mixers, non-linear amplifiers, and spectrally impure oscillators results in the creation of
spurious signals that can be polynomially related to the fundamental tones involved in the
primary frequency conversion process. Spectral response of components that generate
such spurious tones are represented as Spur Charts in the RFIC industry. Within ADS,
there are three types of intermodulation table (IMT) formats which contain equivalent
descriptions for use with behavioral mixer models such as MixIMT_Data and MixerIMT2.
The use of IM tables along with the conversion gain parameter on mixer models is
illustriated in this section.

As the name suggests, IM tables are two-dimensional matrices containing information
about strengths of spurious tones or intermodulation products for specified reference
values of signal and oscillator powers. By convention, each nth column contains mixing
products generated by the (n-1)th harmonic of the local oscillator (LO) and the m th row
contains mixing products generated by the (m-1)th harmonic of the signal (RF). Simple
single-side banded IM tables for single-RF and single-LO mixing start with the DC term
(where m and n are both zero) and the value of active RF harmonic implied by the
position of the row. More complicated double-side banded tables for multi-RF single-LO
mixing require both positive and negative specification of the values of various RF
harmonics in the first few columns to distinguish between sum and difference tones.

 Interpreting IMT Charts

 The simplest of IM tables, corresponding to Spur Chart specification of mixer hardware is
the O-type IMT file. As shown in the following code example, it contains specification of
reference signal power PRF = -10 dBm and oscillator power PLO = +7 dBm. In this
specific table, all entries are non-negative and the IF fundamental power value is zero. In
order for it to be representative of a physical system, this table should be interpreted as a
relative spur chart where a value of x at location (m, n) indicates that the spurs at (m-
1)*FRF + (n-1)*FLO and at |(m-1)*FRF - (n-1)*FLO| are both x dB below the value of
the IF fundamental (at m=n=1). For O-type IM tables only, missing elements are
assumed to be x=99, that is 99 dB lower in power than the IF fundamental. The first
element of the first column indicates that the DC spur is 79 dB below the IF fundamental.
Likewise the element at (3,2) indicates that 2*FRF + FLO and | 2*FRF - FLO | are both 84
dB below the IF fundamental.

BEGIN IMTDATA

IMT (-10 7)

% 0 1 2 3 4 5

Advanced Design System 2011.01 - Using Circuit Simulators

56

 79 56 67 74 72 83

 24 0 68 69 92

 72 84 56 63 90

END IMTDATA

 O-type IMT data for second degree RF nonlinearity mixed with fifth degree LO nonlinearity at PRF = -10 dBm and PLO
= +7 dBm

Additional information can be appended to the structure shown above by including
complex spur information where both strength and phase are specified for each table
entry. Also, sum and difference tone behaviors may be distinguished by including an RF-
side multiplier term as shown for the dual-RF and single-LO IM table below. All elements
must be specified in (dBm,degree) pairs in a double-side banded table in A- and B-type
IMT files. The B-type table shown in the following code example also contains exact RF
and LO frequencies used on some mixer subcircuit to generate the following multi-RF spur
chart. Notice in the table that each RF tone has positive and negative mixing indices
enabling the registration of separate entries for sum and difference tones.

BEGIN IMTDATA

! Frequency units of GHz, absolute spur values in \(dBm, degree

! Reference resistance = port impedance = 50 Ohms

IMT (GHZ S DBM R 50.0)

! The RF fundamentals are at 2.0 GHz and 1.4 GHz.

% FRF1 FRF2

 2.0 1.4

! The LO fundamental is at 1.7 GHz.

% FLO

 1.7

! The reference powers of the two RF tones are -10 and -15 dBm

! respectively.

% PRF1 PRF2

 -10 -15

! The reference powers of the LO tones is \+7 dBm.

% PLO

 7

! The first two columns indicate mixing multipliers on RF side.

! The last 3 columns indicate mixing multipliers on LO side.

% M1 M2 0 1 2 3

 -1 -1 -49 39 -29 -49 -52 -76 -32 -76

 -1 0 -64 -73 -59 23 -84 -15 -44 21

 -1 1 -43 22 -76 23 -55 63 -48 22

 0 -1 -33 39 -52 -76 -74 29 -49 12

 0 0 -79 0 -39 -33 -83 72 -98 6

 0 1 -33 -39 -53 -55 -63 -48 -42 -10

 1 -1 -43 -22 -43 -42 -76 -23 -55 -63

 1 0 -64 73 -55 -39 -33 -83 72 -98

 1 1 -49 -39 -49 39 -29 -49 -52 -76

END IMTDATA

 B-type IM table showing complex spur information for dual RF and single LO mixing

Note that when double-side banded IM tables are presented along with explicit frequency
information, spurs involving differences of one or more tones should always be interpreted
based on the positive value of IF spectral frequency. In the example immediately above, -
1*FRF1 + 0*FRF2 + 1*FLO is numerically -300 MHz. In the table, the (-1 0, 1) entry is -
59 dBm, 23 degrees. The measurable physical manifestation of this spur is at +300 MHz
with the same strength of -59 dBm but phase inverted to -23 degrees. Also, note how
such a multi-RF IM table allows separate classification of colliding tones at the same IF
frequency. The two RF fundamentals captured to the above table are mutual image
frequencies with respect to the LO frequency. The two difference fundamentals of the IF
spectrum both occur at 300 MHz. However, the one due to | - FRF1 + FLO | is captured at
the location (-1 0, 1) whereas the one due to - FRF2 + FLO is captured at (0 -1, 1). The
former should be conjugated to derive physical value. Such accuracy of capturing colliding
tones can be achieved in the ADS Simulation environment. See the design
BehavioralModels > MixIMT_wrk > CKT_IMTB_extraction in the Examples directory for
details.

For details of various IMT formats, see IMT Format (cktsim).

 Interpolation of IMT Data

Advanced Design System 2011.01 - Using Circuit Simulators

57

Since each data point contained within IM tables is not only relevant for the reference
power and frequencies, they are also related to each other across the mixing grid, making
interpolation and extrapolation of IM tables across signal powers and frequencies a non-
trivial proposition. This situation is further complicated by the movement of high-side LO
to low-side LO as one increases RF frequency or lowers LO frequency or performs a
combination of both. Add to that the issue of intermodulation products that collide at the
same spectral point for certain combinations of input frequencies.

For O-type IM tables, where no explicit frequency information is available, no frequency
domain interpolation is performed by data models such as MixIMT_Data. Power domain
interpolation is done by scaling IM table element up in proportion to its mixing multipliers
as demonstrated below:

Q1. Given an IF spur value of x at location (m,n) of an O-type table for
reference powers of PRF dBm and PLO dBm, what is the projected value of the
(m,n) spur at PRF' and PLO'?

A1. Assuming that the mixer is operating in saturation where roll-off of the
strength of the IF fundamental is 1 dB for 1 dB increase in signal or LO power,
the (m,n) position of the O-type table corresponding to the IF tones (m-1)*FRF
+ (n-1)*FLO and |(m-1)*FRF - (n-1)*FLO| will undergo a change of y dB where
y = (|m|-1)*(PRF'-PRF) + (|n|-1)*(PLO'-PLO). The interpolated value of the
spur at (m, n), will then be x + y. This behavior is exhibited by MixIMT_Data for
all variation of RF and LO powers. For earlier models, e.g. MixerIMT2, it is the
responsibility of the user to maintain PRF < PRF' < PRF + 3 dBm and PLO -10 <
PLO' < PLO + 3 dBm to obtain comparable results.

For A- and B-type IM tables, where explicit frequency domain data is available and
multiplicity of IM tables is allowed within the same data file, some amount of linear
interpolation across corresponding mixing products may be allowed for very small
devations along FRFn and FLO axes, where relative spacing of RF and LO tones remain
unchanged and no LO-crossover occurs. For values of FRFn and FLO beyond those on file,
it is safe to enforce the nearest neighboring IM spur chart. Note that frequency domain
interpolation of IF strengths across (m,n)th location of one IM table and the exact same
location of another may not be an accurate representation of circuit level behavior but the
values obtained are rarely non-physical. See example design BehavioralModels >
MixIMT_wrk > BEH_IMT_2R_4L for an interpretation of frequency domain interpolation
using the MixIMT_Data component. Note that MixerIMT and MixerIMT2 components
cannot operate on A- and B-type IMT data.

Power domain interpolation of A- and B-type IM data is done in a manner similar to that of
O-type files explained above.

 Modeling IMT with Conversion Gain

Mixer models that rely on IM tables often posses an additional parameter called ConvGain
or conversion gain. This parameter specifies voltage gain from RF port to IF port and
affects the entire IF spectrum without having any direct impact on RF or LO spectra.
Internally, the voltage value sensed at RF port is amplified by the complex conversion gain
and the amplified RF value used to scale the IF spectrum as specified for IM power domain
interpolation. Thus, given ConvGain=dbpolar(a,b), the MixIMT_Data model generates (m
-1)* a more power at all IM tones of the mth row of the IM table. It simultaneously adds a
phase lead of (m -1)* b to that IF vector. See example design BehavioralModels >
MixIMT_wrk > BEH_IMT_2R_4L for an interpretation of frequency domain interpolation
using the MixIMT_Data component.

 System Noise Analysis
 There are three major contributors to system noise: passive-element thermal noise,
active-element noise, and oscillator phase noise. (For a discussion of oscillator phase
noise, see Harmonic Balance for Oscillator Simulation (cktsimhb).) The system noise
response is simulated by the program under small-signal conditions. A linear analysis of
system noise gives a reasonable representation even when the signal is well into
compression, provided the signal-to-noise ratio is not too low.

Advanced Design System 2011.01 - Using Circuit Simulators

58

System thermal and active noise simulation uses a noise-wave model that accounts for
the effects of element mismatches.

System phase noise is described as the phase-noise level versus the oscillator offset
frequency. System phase noise is simulated by sequentially combining the phase-noise
characteristics of consecutive oscillators from the system input port to the system output
port.

The combined active noise, thermal noise, and phase noise at the system outputs can be
observed in terms of noise power in dBm versus frequency. This total noise power can be
combined with the output signal so that the system output signals can be observed with
the system noise added.

Note
In a noise analysis the following assumptions are made with respect to the terminating resistances that
are implicitly connected to the system network's input and output ports:

The signal source (assumed to be connected to the system network input, or Port 1) is assumed to
have a resistance of 50 ohms at a standard physical temperature, T0, of 290 K. This source

resistance provides noise power at a noise density of -174 dBm/Hz into the system. This source
must be a power source.

The system network outputs (any port other than Port 1) are assumed to be terminated with 50
ohms at absolute zero physical temperature, 0 K. This termination resistance does not contribute
any noise to the noise measured from the system. This termination must be a Term component.

When a noise analysis is requested, it is recommended that you use an Options component and set the
global temperature to 16.85°C.

Advanced Design System 2011.01 - Using Circuit Simulators

59

 Simulation Basics
This documentation provides information that applies to the Analog/RF simulation in ADS.
It also contains general information about the various simulation controllers that are
available in ADS. Before using this documentation, you should see Advanced Design
System Quick Start (adstour) and Schematic Capture and Layout (usrguide) to review the
whole product.

For details about running an Analog/RF simulation, you should also see Preparing a Circuit
for Simulation in ADS (cktsim) and An ADS Simulation Example (cktsim), then continue
with other areas of the Simulation documentation that provide details about the simulation
controllers.

 Contents
The Simulation Process (cktsim)
Using the Schematic Wizard (cktsim)
Using the Smart Simulation Wizard (cktsim)
Simulation Controllers (cktsim)
Analog/RF Simulation Computations and Convergence Criteria (cktsim)

Advanced Design System 2011.01 - Using Circuit Simulators

60

 The Simulation Process
 The following list shows the basic simulation process, and the sections to see for more
information:

Create your schematic, adding current probes and/or wire labels to identify the nodes
from which you want to collect data. For S-parameter analyses, Term devices must
also be added to specify the ports.
Select a simulation method, specifying parameters as necessary. The parameters you
specify are based on the type of simulation you choose, the simulation options you
require, and whether you're sweeping parameters, using expressions, and optimizing
your design.
Selecting Simulation Controllers (cktsim)
Using the Simulator Options Component (cktsim)
Sweeping Parameters (cktsim)
Working with Expressions (cktsim)
Select a name for the dataset. This is where the simulation data will be saved.
Running a Simulation and Controlling Simulation Data (cktsim).
Run the simulation.
Controlling a Simulation (cktsim)
View DC data by annotating the schematic with DC solutions and by viewing brief or
detailed device operating point data.
Viewing DC Solutions (cktsim)
Display additional results using the Data Display.
Displaying Simulation Results (cktsim)
Optimize and tune a design.
Displaying Simulation Results (cktsim)
For complete information, see Tuning, Optimization, and Statistical Design (optstat).

These are the basic steps. It is possible to develop very detailed, complex simulations, but
the process, for the most part, remains the same. ADS includes examples that you can
open and run. For more information on working with examples, refer to Working with the
Examples Directory.

If you are new to using ADS, or you use it infrequently, two wizards are available to help
you with several steps in the process:

Using the Schematic Wizard (cktsim) follows the standard ADS use-model to help you
with design creation and setting up a simulation.
Using the Smart Simulation Wizard (cktsim) requires an existing design, and helps
you sequence several simulations on the same device.

These wizards provide different features which may determine which one you prefer to
use. The Schematic Wizard helps you develop a design and prepares it for a simulation as
if you are working directly in the design environment. The Smart Simulation Wizard
requires that you already have a design available and adds a Smart Simulation module for
sequencing simulations to the design. The following table presents additional differences:

 Comparison of Schematic Wizard to Smart Simulation Wizard

Schematic Wizard Smart Simulation Wizard

Sets up the initial schematic, but does not include
simulation sequencing, allowing support for more
application types.

Has two major features:

Set up initial schematic.
Simulation sequencing on a common device under
test.

Uses the standard ADS use-model for schematic
development.

Simulation sequencing is a non-standard use-model in
ADS.

Allows selection of application categories and
applies to more application types.

Simulation sequencing is limited to certain types of
devices under test, and is not generally extendable to all
application categories.

Provides selection by application, and includes
schematics by simulation-type.

Does not include selection of simulation-type.

Assists with some schematic corrections when
simulation errors appear.

Does not include error correction.

 Working with the Examples Directory
Most of the designs discussed in this documentation are available in the location where
you installed ADS, typically $HPEESOF_DIR/examples directory. For detailed information

Advanced Design System 2011.01 - Using Circuit Simulators

61

about locating and opening ADS example workspaces, see Schematic Capture and Layout
(usrguide). For documentation on ADS examples organized by application, see the
Examples (examples).

Briefly, here is how to get started using examples. ADS examples include workspaces and
templates. On UNIX, these workspaces are read-only directories. To work with an example
workspace, you must first make a copy in a directory for which you have write permission.
Windows users should also copy these examples to preserve the integrity of the examples.
For convenience in keeping track of designs, you may want to create directory names that
mirror those in the examples directory.

You can copy workspaces by using your operating system alone. This ensures that all files
that are part of the workspace are copied.

Advanced Design System 2011.01 - Using Circuit Simulators

62

 Using the Schematic Wizard

The Schematic Wizard is provided to assist new or infrequent ADS users in performing the
basic steps associated with schematic creation. Two options for schematic creation are
available:

Creating a schematic that can be used as a component or subnetwork in another ADS
design.
Setting up a simulation based on a desired application or simulation type. The
schematic can include an existing or sample test circuit, or simply provide a
simulation schematic into which a test circuit can be placed.

The Schematic Wizard guides you through a sequence of steps gathering information from
you about the type of schematic you want to create. Based on your inputs, the wizard
automatically creates the specified schematic components. The wizard then provides you
with instructions for completing the schematic manually, and for invoking the simulator
when applicable. The simulations are set up to automatically display the results after
successful simulations.

 Accessing the Schematic Wizard
Access to the Schematic Wizard is controlled by the Schematic Wizard preference options.
You can set these options in the Main Preference dialog (in the ADS Main window:
Options > Preferences). The Schematic Wizard automatically appears when you
perform certain actions related to the Schematic window.

Note
The Schematic Wizard is not available for designs manipulated through any Layout window.

 Opening a New Schematic from ADS Main Window

When you open a new Schematic from the ADS Main window (using the toolbar button or
File > New > Schematic), the Schematic Wizard will appear if you have selected the
Schematic Wizard option. The wizard will not appear if the new Schematic window is
requested from an existing Layout window.

 New Schematic

Requesting a new schematic from any ADS window opens the New Schematic dialog. This
dialog also contains a Schematic Wizard option. (This option is not accessible when a new
design is opened from any Layout window.) If the wizard option is selected, the Schematic
Wizard will open after you click OK in the New Schematic dialog. The default setting for
the Schematic Wizard option is controlled by its preference setting in the Main Preference
dialog. If it is selected in the Main Preference dialog, it will be checked by default in the
New Schematic dialog.

When setting the design content options, the Schematic Wizard and Schematic Design
Templates cannot be used at the same time since they both place components on the
Schematic. Therefore, selecting the Schematic Wizard option automatically clears any
request for a Schematic Design Template. Similarly, requesting a Schematic Design
Template automatically clears the Schematic Wizard option.

Advanced Design System 2011.01 - Using Circuit Simulators

63

 Simulation Error

If you run a simulation using a simulation schematic that is not properly configured, the
simulator will terminate with errors. If the Schematic Wizard option is selected, the wizard
will appear automatically after the simulation attempt has completed if the error occurs
due to either of these reasons:

A schematic with an S-parameter simulation controller does not contain any valid
Term components.
The simulation schematic does not contain a valid simulation controller.

You can use the Schematic Wizard to help you correct the schematic. See Correcting an S-
Parameter Simulation Schematic and Correcting a Simulation Schematic with No
Simulation Controller.

 Schematic Wizard Start Page
When the Schematic Wizard appears, the Start page presents you with the following
choices for proceeding with the schematic creation:

Circuit Helps you create a subnetwork that can be used as a component in another
ADS design. See Creating a Circuit.

Simulation Helps you set up a simulation and place a circuit to be simulated. See
Creating a Simulation Schematic.

No help needed Dismisses the wizard.

When the Schematic Wizard is accessed by starting a new schematic design or opening a
new Schematic window, this page also offers the option Do not show this dialog again.
Selecting this option will turn off the Schematic Wizard preference. You can select the
Schematic Wizard preference option again in the Main Preferences dialog.

Advanced Design System 2011.01 - Using Circuit Simulators

64

 Schematic Wizard Navigation
The Schematic Wizard provides a navigation bar in the upper left corner of the window.
This navigation bar indicates your progress through the steps required to complete the
schematic setup, with a green box next to the current step. The steps on the navigation
bar change depending on the options you select in the wizard.

Use the Back and Next buttons to move back and forth through the steps. The Back
button is active for all steps except for Start. The Next button remains inactive for each
step until you make a valid selection. When you have completed all required steps, use
the Finish button to initiate schematic creation. The final step also provides an option to
have instructions appear that assist you in the remainder of the schematic creation
process. This option is persistent, so the setting for this option is the default the next time
the wizard is used.

 Creating a Circuit
Choosing the Circuit option from the Start page enables you to create a subnetwork that
can be placed in another ADS design. Creating a subnetwork involves placing and naming
pins, and selecting a symbol that will represent the circuit. The steps associated with this
choice are:

Circuit Setup
Name Pins
Finish

 Circuit Setup Step

Pins represent the connections of a circuit to the outside world. In this step of the design,
you must specify how many pins you anticipate for your circuit. For example, if designing
an amplifier from a transistor and passive components, the circuit might have an input,
output, and bias connection. In this case, you should request three network pins.

A symbol is used to represent a subnetwork when it is placed within another ADS design.
Each connection point on the symbol will correspond to one of the subnetwork pins. ADS
can automatically generate a symbol for you based on the number of pins specified, which
is achieved using the Use default symbol option. However, if you want your symbol to
be representative of the underlying subnetwork, use the Allow symbol selection option.
You will be provided with a large set of possible symbols from which to choose.

Correctly specifying the number of pins at this stage of the process will ease the work in
creating the subnetwork. However, if you later determine that you must add or remove a
pin from the circuit, this can be done manually. It is important, however, that the change
is made to both the circuit design and the symbol in order for the subnetwork to function
properly.

Advanced Design System 2011.01 - Using Circuit Simulators

65

 Naming Pins Step

Pins created in ADS assume default names of P1, P2, etc. However, to make the pin
designations more physically meaningful, it is possible to specify alternate names for
these pins. In this phase of the process, you may either use the default names provided or
type in the desired names for each pin.

If you chose the Use default symbol option in the Circuit Setup step, Show
instructions for completing schematic option is available that allows you to determine
whether or not you would like instructions to appear after the wizard has completed the
setup. However, if you chose the Allow symbol selection option, Show instructions
for completing schematic option is not available. In this case, the instructions will be
shown to help you create the custom symbol and return to the schematic view following
symbol selection.

 Finish Circuit Creation Step

Successful completion of the wizard leads to a starting design in which pins are placed. If
you chose Use default symbol option, you will see the requested number of pins placed
on the schematic. You can view the symbol that has been created for you using the
Window > Symbol menu selection. If you go to the symbol view, you can return to the
schematic using the Window > Schematic menu selection. If you chose to have
supplemental instructions provided, a dialog will also appear, similar to the following
figure, containing these instructions. You can move this dialog out of the way to interact
with the schematic.

If you chose Allow symbol selection option in the Circuit Setup step, the Symbol
Generation dialog box appears with a selection of different symbols. You can scroll through
these selections and choose a suitable symbol. Be sure, however, that the number of pins
on the symbol matches the number of pins specified on the wizard. Once you have
selected a symbol, you can return to the schematic view using the Window > Schematic
menu selection. If you chose a symbol with a number of pins that does not match the
specified number of pins, you will be warned of this problem when you return to the
schematic view provided that the dialog containing the instructions is currently visible.

Advanced Design System 2011.01 - Using Circuit Simulators

66

In either case, once you are in the schematic view, you can create the appropriate design
and connect it to the pins at the proper nodes in the circuit. Once the design has been
saved and provided a suitable name, it will be ready for placement in other designs.

 Creating a Simulation Schematic
Choosing the Simulation option from the Schematic Wizard Start page enables you to
create a schematic that will simulate the behavior of a sample or user-created circuit.
Creating this schematic involves choosing the desired application, specifying the test
circuit, indicating the desired simulation type, and when appropriate, specifying how a
circuit should be placed in the simulation schematic. The steps associated with creating a
simulation schematic are:

Application
Circuit
Simulation Setup
Finish

 Application Selection Step

Advanced Design System 2011.01 - Using Circuit Simulators

67

The first step in creating a simulation schematic is choosing the application type. A variety
of different choices representing common applications are provided. If you find your
intended application on the list, you can select it. If you do not see your application, the
Schematic Wizard may still be able to provide assistance in creating your schematic.
Simply choose the Other Application (not listed) option at the bottom of the tree.

Hint
The wizard will not allow you to proceed until you have made a valid selection from the list. Top-level
items in the tree structure that have sub-items beneath them are not valid selections.

 Circuit Selection Step

Once you have determined the application type, you are ready to specify the circuit that
will be simulated within the schematic. Three options are provided relative to the test
circuit:

Use sample design A sample circuit appropriate for the application is provided. This
circuit will be copied into your workspace directory and connected into the simulation
schematic.
Use existing design Enables you to specify an existing ADS subnetwork (created,
for example, using the Circuit option of the Schematic Wizard) for placement within
the simulation schematic. All designs in the current workspace will be shown.
However, if you select a design that has not been properly created for use as a
subnetwork, a warning will be issued and the design will be deselected.
I will design my own circuit No test circuit will be placed in the simulation
schematic. It is assumed that you will design your own circuit and manually connect
it into the schematic created by the wizard.

The availability of each option is dependent on the selection made at prior steps.

Advanced Design System 2011.01 - Using Circuit Simulators

68

Hint
The wizard will not allow you to proceed until you have made a valid selection.

 Simulation Setup Step

You are now prepared to specify the type of simulation that you would like to complete.
Based on prior selections, a list of possible simulations is offered. If you chose Other
Application option in the Application Setup step, then at this stage you are presented
with a tree structure of common simulations as well as system and user-defined
simulation templates. The Description area below the list of simulations helps you to
choose from the different simulation options.

Hint
The wizard will not allow you to proceed until you have made a valid selection.

 Pins Specification Step

If you chose Use existing design in the Circuit Selection step, and you have selected a
valid design to use as a test circuit within your simulation schematic, the Pins Specification
step is added. You must use this step to indicate what each of the pins on the component
refers to within the subnetwork. Based upon application/simulation selections, you will be
given a list of possible designations for each pin. Using the pull-down list, specify the
appropriate pin type. If you do not see the pin type listed, you can choose either to
ground the pin or leave it unconnected (open circuit termination). The circuit will be
placed on the schematic at this point so that you can visually inspect it to assist in the
port designation.

Advanced Design System 2011.01 - Using Circuit Simulators

69

Hint
Using the Back button at this step will remove the placed circuit from the schematic.

 Schematic Completion Step

Successful completion of the wizard leads to a schematic that is nearly ready for
simulation. If you requested that instructions be provided in the Simulation Setup step, a
dialog will appear with information to assist you in performing the specific tasks associated
with completing your design, simulating the circuit, and viewing the simulation results.

Important
Be sure to save the design if you want to preserve it.

If you chose to use a simulation template (obtained using the Other Application path),
you must manually connect the test circuit (if specified) into the simulation schematic.
Some templates may already have a test circuit included, in which case you can either use
the existing test circuit or delete it and put the specified test circuit placed by the wizard
in its place. Furthermore, if you chose to create your own circuit, you must do so before
meaningful results can be generated by the simulation.

Each simulation schematic is associated with a display template. Once you have
completed the schematic and successfully simulated a design, a display window will
appear showing the results of the simulation for your circuit.

 Correcting an S-Parameter Simulation Schematic
If a simulation schematic contains an S-Param simulation controller but does not include
Term components, the Schematic Wizard will appear (if the preference is set). In this
case, the Start page will indicate the error and give you the option of using the wizard to
assist in correcting the schematic. The tasks associated with correcting an S-parameter
simulation schematic are:

Term Properties
Finish

Advanced Design System 2011.01 - Using Circuit Simulators

70

This page also offers the option Do not show this dialog again. Selecting this option will
turn off the Schematic Wizard preference option. You can select the wizard option again in
the ADS Main window: Options > Preferences.

 Term Properties Specification Step

The first step in correcting an S-parameter simulation schematic is specifying the
reference impedance for the ports in the network. You can later change this value by
editing the parameters of the Term components placed on the schematic.

Hint
The wizard will not allow you to specify an invalid reference impedance.

 Term Placement Step

You are now prepared to place your S-parameter network ports (Term components) on
the schematic. Simply click the mouse at the locations in the circuit where you would like
to place a Term. The Schematic Wizard will automatically place the component for you
with a ground, and the ports will be numbered in the order in which they are placed.
Placing the Term components directly on a node of a circuit will result in their automatic
connection to the circuit. Placing them elsewhere will require that you manually wire the
Term components to the desired nodes after you have finished placing them. If the
placement is not exactly what you had intended, you can manually move and rewire the
Term components after completion of the placement step.

Advanced Design System 2011.01 - Using Circuit Simulators

71

Once you have finished placing all desired terms, click Finish.

 Schematic Completion Step

If you requested that instructions be provided in the Term Properties step, a dialog will
appear with information to assist you in performing the specific tasks associated with
completing your design and simulating the circuit. If you did not place the Term
components directly on a circuit node, you will need to manually wire them to the
intended nodes in the circuit.

Important
Be sure to save the design if you want to preserve the changes.

 Correcting a Simulation Schematic with No
Simulation Controller
If a simulation schematic does not contain a simulation controller, the Schematic Wizard
will appear (if the preference is set). In this case, the Start page will indicate the error and
give you the option of using the wizard to assist in correcting the schematic. The tasks
associated with correcting the simulation schematic are:

Template Setup
Finish

This page also offers the option Do not show this dialog again. Selecting this option will
turn off the Schematic Wizard preference. You can select the wizard option again in the
ADS Main window: Options > Preferences.

 Template Setup Step

Advanced Design System 2011.01 - Using Circuit Simulators

72

You can now specify the type of simulation that you would like to complete. You are
presented with a tree structure of common simulations as well as system and user-defined
simulation templates for the design type (Analog/RF or DSP). The Description area below
the list of simulations helps you to choose from the different simulation options. If you do
not wish to place an entire simulation template, you can choose to place only a simulation
controller by selecting the Place simulation controller only option.

Hint
The wizard will not allow you to proceed until you have made a valid selection from the list. Top-level
items in the tree structure that have sub-items beneath them are not valid selections.

 Schematic Completion Step

If you requested that instructions be provided in the Template Setup step, a dialog will
appear with information to assist you in performing the specific tasks associated with
completing your design and simulating the circuit. For most templates, this will include
placing the requested simulation template in the desired location on your schematic. If,
however, you requested a full S-parameter simulation template, the main elements of the
template will be placed at the top of your schematic and you will be given the opportunity
to place the Term components on the schematic. The instructions will not appear until you
have clicked Finished on the dialog that appears.

Important
Be sure to save the design if you want to preserve the changes.

Advanced Design System 2011.01 - Using Circuit Simulators

73

 Using the Smart Simulation Wizard
The Smart Simulation Wizard is provided to assist new or infrequent ADS users in setting
up simulations for typical microwave/RF circuits. The wizard will guide you through the
process of:

Selecting an application-specific design (or your own design)
Selecting predefined simulation setups
Specifying simulation settings (frequency, bias, etc.)

The wizard then configures the sources and simulation controls and begins the
simulation(s). When multiple simulations-requiring different configurations-are requested,
the wizard automatically reconfigures the subnetwork for the appropriate sources,
terminations, and simulation controls. When the simulation is finished, simply click to
display the results. Note that although basic simulation setups are provided with the
various simulator licenses, additional simulation setups require specific DesignGuide
licenses. These differences are identified in the wizard.

 To invoke the Smart Simulation Wizard :

From the Schematic window, choose Simulate > Smart Simulation Wizard.

Step 1 prompts you to select one of several different application types.

Device Characterization BJT Characterization
FET Characterization
MOSFET
Characterization

Amplifier Amplifier

Mixer Single-Ended Mixer
Differential Mixer

Linear Circuit Linear 2-port
Linear 4-port

Step 2 prompts you to select one of the following design types:

A sample design provided by the Smart Simulation Wizard
An existing ADS subnetwork design
A new subnetwork design

Step 3 varies based on the choice made in Step 2. You are prompted to select an existing
design, enter a name for a new design, or select one of the following application-specific
designs.

Advanced Design System 2011.01 - Using Circuit Simulators

74

Device Characterization

BJT Characterization

NPN BJT NPN BJT model, biased with IBB = 60 uA, VCE = 2.7V.

PNP BJT PNP BJT model, biased with IBB = -60 uA, VCE = -2.7V.

FET Characterization

GaAs MESFET Statz
Model

Statz FET model for device FLC301XP.

EEFET Model EEFET3 FET model for device FLC081XP.

GaAs MESFET Model Basic MESFET model.

HEMT Model Basic HEMT model.

JFET Model Basic JFET model.

MOSFET Characterization

NMOSFET Model Basic BSIM3 model for NMOSFET.Width = 1e-5, Length = 2.5e-7.

PMOSFET Model Basic BSIM3 model for PMOSFET.Width = 1e-5, Length = 2.5e-7.

Amplifier

Amplifier

MOSFET Power
Amplifier

Power Amplifier with a single MOSFET, 14 dB gain between 750 - 800 MHz.

BJT Power Amplifier Power amplifier with 8 BJTs, 12 dB gain at 2 GHz.

Behavioral Model
Amplifier

Ideal amplifier with Behavioral model. Gain, S-parameters and noise figure can be
specified directly.

Mixer

Single-Ended Mixer

MESFET Gilbert Cell
Mixer

MESFET Gilbert Cell Mixer internally matched to 50 ohm at 900 MHz.

FET Mixer Single-ended MOSFET Mixer.

BJT Gilbert Cell
Mixer

Single-ended BJT Gilbert Cell Mixer.

Behavioral Model
Mixer

Ideal Mixer Behavioral model.

Differential Mixer

MOSFET Gilbert Cell
Mixer

Differential MOSFET Gilbert Cell Mixer with Bias1 = 3.3V, Bias2 = 0V.

FET Mixer Differential FET Mixer with Bias1 = 0V, Bias2 = 0.5V.

Linear Circuit

Linear 2-port

Simple Lowpass
Filter

Simple LC lowpass filter with cut-off frequency at 10 MHz.

Microstrip Bandpass
Filter

Simple bandpass filter composed of two concatenated microstrip subnetworks.Center
frequency: 12 GHz. 10% bandwidth.

S-Parameter Data
File

Two-port subcircuit defined by an S-parameter file nec71000.dat .

Linear FET Linear FET model for small-signal modeling.

Linear 4-port

Linear FET Modeling Matching a linear FET model to measured S-parameters.Measured data file
nec71000.s2p .

Step 4/Step 5 varies based on your previous choices. For an existing ADS design, you
are prompted to identify the port type for each port in your design (input, output, base,
collector, etc.). For all design types, the wizard then describes how to view the network
associated with the schematic symbol and how to access the simulation setup portion of
the wizard.

When you click Finish, the top-level design appears, and you will see that it consists of
two main parts: a schematic symbol representing the subnetwork to be simulated and a
simulation setup symbol.

Note
If working with a sample design, the top-level and subnetwork designs, as well as the related data
displays, are copied to the current workspace. If you select an existing design from a different workspace
(via an Included workspace), that design is copied to the current workspace.

Schematic symbol - A schematic symbol representing the subnetwork to be
simulated, is visually connected to the simulation setup symbol. Push into the symbol

Advanced Design System 2011.01 - Using Circuit Simulators

75

to view, edit, or create the subnetwork.
When you push into most of the schematic symbols, you will notice that the
subnetwork designs contain cautions against deleting or renumbering of ports.
Simulation setup symbol - The simulation setup symbol is similar to the one shown
next. Double-click (or right-click and select the first choice from the pop-up menu) to
specify the simulation setup details.

Each simulation is marked with one of two icons, as shown next.

You can highlight any selected simulation (from the list box on the right) and click Show
Schematic to view the design containing the simulation setup.

From the Simulation Settings tab you can specify the desired settings for the simulation
parameters such as frequency, power, bias, etc. When you have selected all the desired
simulations and specified the desired settings, click Simulate to proceed. The progress
window appears and is dynamically updated to indicate which simulations have completed
and which remain. When all simulations are complete click Display Results to view the
data displays. Note that the results for each simulation are displayed on separate pages,
which can be accessed individually from the Page menu.

Hint
After simulating a given design once, you can display the results from the previous simulation via the pop-
up menu. Position the pointer over the simulation setup symbol, click right, and select Display Data from
Last Simulation.

Advanced Design System 2011.01 - Using Circuit Simulators

76

 Simulation Controllers
 ADS provides simulators that enable you to simulate circuits and RF systems designed for
specific objectives. The following table provides brief descriptions of the available
simulation controllers. See the documentation for the Analog/RF simulation controllers for
complete information about each one.

Simulator Description

 DC Fundamental to all simulations, it performs a topology check and an analysis of the
DC operating point of a circuit. See DC Simulation (cktsimdc).

 AC Obtains small-signal transfer parameters, such as voltage gain, current gain, and
linear noise voltage and currents. This simulator is useful in designing passive circuits
and small-signal active circuits such as low-noise amplifiers (LNAs). See AC
Simulation (cktsimac).

 S-parameter Provides linear S-parameters, linear noise parameters, transimpedance (Zij), and

transadmittance (Yij), by linearizing the circuit about the DC operating point and

performing a linear small-signal analysis that treats the circuit as a multiport. Each
port is turned on sequentially. S-parameters can be converted to Y- and Z-
parameters. This simulator can be used to achieve many of the same design goals as
the AC simulator. See S-Parameter Simulation (cktsimsp).

 Harmonic Balance Uses nonlinear harmonic-balance techniques to find the steady-state solution in the
frequency domain. This simulator is useful in designing RF amplifiers, mixers, and
oscillators. A Krylov subspace technique is available to reduce memory requirements
and increase the speed of solution. This option is useful in designing large RF
integrated circuits or RF/IF subsystems, where a large number of devices or large
numbers of harmonics and intermodulation products are involved. See Harmonic
Balance Simulation (cktsimhb).

 Large-signal S-
parameter (LSSP)

A type of harmonic balance simulation, it performs large-signal S-parameter analyses
to represent the nonlinear behavior of items such as power amplifiers. The
accompanying P2D simulator available in ADS can be used to speed up subsequent
analyses. See Large-Signal S-Parameter Simulation (cktsimlssp).

 P2D Generates a .p2d file that can be used to describe the behavior of a file-based
component (such as the AmplifierP2D component, available in the System-Amps &
Mixers library). See P2D Simulation (cktsimp2d).

 Gain Compression
(XdB)

Seeks a user-defined gain-compression point at which an actual power curve deviates
from an idealized linear power curve. This is useful in power amplifier design. See
Gain Compression Simulation (cktsimgain).

 Circuit Envelope Uses a combination of frequency- and time-domain analysis techniques to yield a fast
and complete analysis of complex signals such as digitally modulated RF signals. It
represents input waveforms as RF carriers with modulation envelopes that are
described in the time domain. This is useful in designing circuits and systems
involving modulators/demodulators or complex modulated signals. See Circuit
Envelope Simulation (cktsimenv).

 Transient/Convolution Solves a nonlinear circuit in the time domain, and linear components can be
simulated by means of convolution or a simplified equivalent-circuit model. See
Transient and Convolution Simulation (cktsimtrans).

 RF System Budget
Analysis

Determines the linear and nonlinear characteristics of an RF system comprising a
cascade of two-port linear or nonlinear components. The RF system may also include
automatic gain control (AGC) loops to control gain and set power levels at specific
points in the RF system. See RF System Budget Analysis (rfsysbudget).

X-Parameter Generator Obtains X-parameters of a component, circuit, or subnetwork which can be used as a
behavioral model in simulation using the XnP component. See X-Parameter Generator
(xparam).

Data-based Loadpull
Simulation

Uses the measured data available in one or more loadpull files and returns the
performance achieved when using specified load-impedance values. See Data-based
Loadpull Simulation (cktsimldpull).

Note
These simulators require licenses to run a simulation. Confirm that the simulator of interest is included
with your purchase. ADS allows you to create a circuit, but if you do not have the correct license you will
not be able to simulate it.

 Common Simulation Usage
The following table describes some common design objectives and the simulators that
would be appropriate to each. The simulators are listed in the order they would generally
be applied.

 Simulator used for Various Design Types

Advanced Design System 2011.01 - Using Circuit Simulators

77

Design Simulator Comments

Filter DC

 AC

 S-parameter

Mixer DC

 AC Test for AC frequency conversion (also known as frequency-converting
AC, or FCAC).
Applies to system mixer models only.

 Harmonic
Balance

Select nonlinear noise option to obtain noise figure.

 Transient

 Envelope

 XDB

Power amplifier DC

 AC

 S-parameter

 Harmonic
Balance

Test for load-pull characteristics.

 LSSP Also use the P2D simulator to generate a .p2d file.

 XDB Find gain-compression point.

 Transient

 Envelope Find ACPR (adjacent-channel power ratio).

Transceiver DC

 AC Test for AC frequency conversion (FCAC).

 Harmonic
Balance

 Envelope

 Budget RF system must be a cascade of two-port components.

Oscillator DC

 S-parameter

 Harmonic
Balance

Check for power spectra and phase noise.

 Envelope Check for startup switching.

Phase-locked
loop

Envelope Check for transient responses.

 Selecting Simulation Controllers
Simulation controllers are grouped in a number of simulation palettes accessed from the
Component Palette List.

Each palette contains the specific simulation controller, plus:

The Options component
Components for defining sweep plans and parameter sweeps
Node set components
Measurements
Frequently-used components, such as ports and sources

To use a controller, select it from the palette, position the pointer in the drawing areas of
the Schematic window and click to place it.

Advanced Design System 2011.01 - Using Circuit Simulators

78

 Using the Simulator Options Component
 This section discusses the details about the Options component in ADS. The Options
component includes general simulation options such as convergence tolerances, warnings,
and global noise temperature. An Options component can be used with any ADS
simulation, and it is available from every simulation palette. The options cover the
following areas:

Tab Name Description For details, see...

Misc Miscellaneous options for simulation and model temperatures,
topology checking, and linear and nonlinear devices.

Setting Miscellaneous
Simulation Options

Convergence Options related to voltage and current convergence
tolerances.

Setting Convergence Options

Output Sets warnings, and the saving of branch currents and node
voltages.

Setting Output Options

DC Solutions Saves DC solution to a file to re-use as an initial guess in
further simulations.

Setting DC Solution Options

Threading Controls the number of physical threads used by the
simulator, and enables use of the graphics processing unit
(GPU) acceleration.

Setting Threading Options

Fast Linear
Simulation

Controls a number of parameter to help improve linear
simulation speed.

Setting Fast Linear
Simulation Options

Display Controls the visibility of simulation parameters on the
Schematic.

Displaying Simulation
Parameters on the
Schematic

 Setting Miscellaneous Simulation Options

Use the Misc options described in the following table to control simulation and model
temperatures, topology checking, and set options for linear and nonlinear devices. In the
table, names used in netlists and ADS schematics appear under Parameter Name.

Note
 Simulator options are commonly used in nonlinear noise analyses. The IEEE standard temperature (T0)
for noise figure measurement is 290 K (16.85 degrees Celsius). This can be set by editing Simulation
temperature to that value (on Misc tab).

 Miscellaneous Simulator Options

Advanced Design System 2011.01 - Using Circuit Simulators

79

Setup Dialog
Name

Parameter Name Description

Temperature

Simulation
temperature

Temp Sets the ambient temperature at which a simulation will be run.
The default is 25 degrees Celsius. The predefined variable temp is
set to this value.

Model
temperature

Tnom Sets the default value for the nominal temperature of models. The
default is 25 degrees Celsius. The predefined variable tnom is set
to this value.

Topology
Checker

Sets topology checker mode and warning message formatting.

Perform
topology check
and correction

TopologyCheck Performs a topology check and corrects common topological
problems before a simulation is run. Enabled by default. A
summary of topological problems is reported in the
Simulation/Synthesis Messages window. It is recommended that
you perform topology checks for better simulation performance. †

Format
topology check
warning
messages

TopologyCheckMessages Sets the mode for listing topology check messages to Summary or
Verbose. By default a summary of the topological problems found
is printed to the Simulation/Synthesis Messages window if
TopologyCheck=yes. To see a list of all the nodes that have
topological problems, set TopologyCheckMessages to Verbose. †

Linear Devices

Use S-
parameters
when possible

ForceS_Params Causes the simulator to attempt an S-parameter simulation on
linear devices.

Nonlinear Devices

P-N parallel
conductance

Gmin Specifies the minimum conductance added in parallel to the p-n
junctions in the nonlinear devices. The default is 1e-12 siemens.
Some of the models have the Gmin parameter. If it is specified in
the nonlinear model, it takes precedence over the one in the
options.

Explosion
current

Imax Specifies the p-n junction explosion current used in the nonlinear
devices. When p-n junction current exceeding this value, the
junction is linearized. The Imax value specified in the device
model parameter takes precedence over the one in the options. If
Imax is not specified in the model parameter, the Imax given in
the options will be used. If Imax is not specified in the options,
the default Imax value from each nonlinear model will be used.

Explosion
current

Imelt Specifies the p-n junction excessive explosion current used in the
nonlinear devices.

Mosfet BSIM3,
4 diode limiting
current

Ijth Similar to Imax, except that it is called Ijth in BSIM3 and
Ijthdfwd, Ijthdrev Ijthsfwd, Ijthsrev in BSIM4.

† For more information about topology checking see DC Simulation (cktsimdc).

 Setting Convergence Options

 The simulators work using an iterative method to solve the nonlinear equations. Given an
initial guess x_0, it computes a new guess x_1. From that, it computes x_2. This
continues until convergence is reached. When x_j is close to x_j-1, it is considered
converged, and the solution stops changing. Convergence is defined as follows:

if (x_j− x_j−1 < reltol*x_j + abstol) then
converged
else
keeps iterating

If the difference between the two iterations is less than the relative tolerance times the
solution plus an absolute tolerance, the convergence is effective.

Note
Advanced simulation parameters are accessible with this group. However, as a result of the improvements
made to the DC simulation algorithm, it is extremely unlikely that the default values need to be modified.
You are strongly encouraged to leave the advanced parameters set to their default values. If you
encounter a circuit for which a DC analysis does not converge using the default values, or you find it
necessary to change the value of any of these parameters, please contact Agilent EEsof Technical Support.
See Setting Advanced DC Convergence Options for details about these parameters.

Advanced Design System 2011.01 - Using Circuit Simulators

80

Caution
Simulator parameters saved in design files in previous releases are supported in later releases. The
advanced simulation parameters saved prior to and opened in ADS 2005A are recognized and populated in
the simulation setup dialog box. However, due to the improvement in robustness and speed of the default
DC simulation algorithm the user-defined values are disabled, and factory-defined default values are used.
Changing these default values is not recommended. However, if you find it necessary to restore the
original user-defined values, you must manually enable Advanced Settings to restore them.

Use the Convergence options described in the following table to select voltage and current
convergence criteria (tolerances) which apply to all analysis types. In the table, names
used in netlists and ADS schematics appear under Parameter Name.

 Simulator Convergence Options

Setup Dialog Name Parameter
Name

Description

Convergence Check - There are three tolerance presets to provide options for beginning users. For
comparison of tolerance preset values, see the following table.

Relaxed Yields fast but less accurate simulations. It is intended for use in the
initial stages of the circuit design process or for quick simulation
estimates.

Intermediate Offers a middle ground between Relaxed and Strict.

Strict Yields the most accurate results, but is the slowest. This is the default.

Custom Use custom settings.

Analysis Defaults Simulator runs in automated mode using the most appropriate values.

Tolerances-these apply to all simulation types.
For details about these parameters, see Current Relative Tolerance, Current Absolute Tolerance andVoltage
Relative Tolerance, Voltage Absolute Tolerance.

Voltage relative
tolerance

V_RelTol A relative voltage convergence criterion. The default is 10-6.

Current relative
tolerance

I_RelTol A relative current convergence criterion. The default is 10-6.

Voltage absolute
tolerance

V_AbsTol An absolute voltage convergence criterion. The default is 10-6 V.

Current absolute
tolerance

I_AbsTol An absolute current convergence criterion. The default is 10-12A.

Frequency relative
tolerance

FreqRelTol Relative frequency convergence criterion (used only in oscillator
analysis). The default is 10-6.

Frequency absolute
tolerance

FreqAbsTol Absolute frequency convergence criterion (used only in oscillator
analysis). The default is 10-6 Hz.

Advanced... Click Advanced to access advanced DC convergence settings described
in Setting Advanced DC Convergence Options.

 Default Preset Tolerance Values

 Relaxed Intermediate Strict (default)

V_RelTol 10-3 3x10-5 10-6

I_RelTol 10-3 3x10-5 10-6

V_AbsTol 10-4 10-5 10-6

I_AbsTol 10-8 10-10 10-12

Note
If simulator options are not set, transient analysis uses a default value of 10-3 for V_RelTol, and I_RelTol,
while all other analysis types use the default value of 10-6. If simulator options are set, they apply to all
analysis types.

 Current Relative Tolerance, Current Absolute Tolerance

These tolerances are used to satisfy Kirchhoff's Current Law (KCL) in solving for the
currents at each node in the circuit. The simulator attempts to find a solution that satisfies
KCL, so that the sum of the currents entering (or leaving) all circuit nodes is zero. At each
iteration, it uses Current relative tolerance and Current absolute tolerance as a tolerance
for the node currents. For convergence to be achieved, the currents must satisfy the
following at each circuit node:

file:wiki/pdf_print_view/cktsim/Using_Circuit_Simulators.html#SimulationControllers-CurrentRelativeTolerance,CurrentAbsoluteTolerance
file:wiki/pdf_print_view/cktsim/Using_Circuit_Simulators.html#SimulationControllers-VoltageRelativeTolerance,VoltageAbsoluteTolerance
file:wiki/pdf_print_view/cktsim/Using_Circuit_Simulators.html#SimulationControllers-VoltageRelativeTolerance,VoltageAbsoluteTolerance
http://edocs.soco.agilent.com/pages/editpage.action#SimulationBasics-SettingAdvancedDCConvergenceOptions

Advanced Design System 2011.01 - Using Circuit Simulators

81

where

 = Current in each branch connected to the node

 = Current relative tolerance

 = Current absolute tolerance

The default value for Current relative tolerance is 10-6 (0.0001 percent), and the default
value for Current absolute tolerance is 10-12 (1 pA). For many problems, these tolerances
are much tighter than they need to be. (The default value of Current relative tolerance in
Berkeley SPICE 3e1 is 10-3.) Relaxing these tolerances not only allows problem circuits to
be solved, but it also allows them to be solved in less time.

 Voltage Relative Tolerance, Voltage Absolute Tolerance

Once Kirchhoff's law is satisfied for all nodes, the simulator checks for unique solutions by
calculating all node voltages. Sometimes, large changes in node voltages cause very little
change in node currents. For instance, if two S-parameter blocks (that is, any 2-port, such
as an amplifier or filter, for which there are measured S-parameters) are cascaded, and
the reference node between the two components is not grounded, then the differential
voltage between the two S-parameter blocks can have any value at all without changing
the currents. The circuit then has multiple possible solutions. To find the correct solution
for all node voltages, the simulator will use the Voltage relative tolerance and Voltage
absolute tolerance parameters in a manner similar to the way it uses Current absolute
tolerance and Current relative tolerance. For convergence, the following relationship must
be satisfied for every node voltage in the circuit:

where

 = Change in the node voltage solution from the previous iteration

 = Node voltage found in this iteration of the solution

 = Voltage relative tolerance

 = Voltage absolute tolerance

The default value for both Voltage relative tolerance and Voltage absolute tolerance is 10-6

. Like Current absolute tolerance and Current relative tolerance, these tolerances can be
loosened to help with simulation convergence and speed.

 Setting Advanced DC Convergence Options

The stand-alone DC simulator's sole role is to do a DC analysis. All other simulators such
as AC, S-parameter, transient, harmonic balance, and circuit envelope do an initial DC
analysis as their first step. The Advanced DC Convergence options are used to control the
initial DC analysis done by these simulators. For information about setting up stand-alone
DC simulations, see DC Simulation (cktsimdc).

 The robustness and speed of the default DC analysis algorithm has been significantly
improved in ADS 2005A. All DC analyses with factory-default settings are expected to
converge to the correct solution with near-optimal speed. This means that it is extremely
unlikely that either of the following advanced simulation parameters must be altered:

DC_ConvMode

Advanced Design System 2011.01 - Using Circuit Simulators

82

MaxDeltaV

Use the options in the following table to select Advanced DC convergence options. In the
table, names used in netlists and ADS schematics appear under Parameter Name.

 Advanced DC Convergence Options

Setup Dialog
Name

Parameter
Name

Description

Advanced DC
Convergence
Settings

Enable this parameter to access these DC convergence settings.

Max. Delta
voltage

MaxDeltaV Maximum change in node voltage per iteration. If no value is specified, the
default value is four times the thermal voltage, or approximately 0.1 V.
Applies to all analyses (except DC simulation) that require a DC solution. †

Mode DC_ConvMode Controls the DC convergence mode for all analyses (except DC simulation)
that require a DC solution. †
Select a mode from the following convergence algorithms:

Auto
sequence

0 Default convergence mode. Cycles through various algorithms and parameter
values and has been optimized for both robustness and speed. Should
converge for all circuits, and is therefore strongly recommended over all other
convergence modes.

Newton-
Raphson

3 Iterative process that terminates when the sum of the currents into each
node equals zero at each node, and the node voltages converge. Used by
other convergence modes.

Forward
source-level
sweep

4 Sets all DC sources to zero and then gradually sweeps them to their full
values. The source steps are determined via homotopy/continuation methods.

Rshunt
sweep

5 Inserts a small resistor from each node to ground and then sweeps this value
to infinity.

Reverse
source-level
sweep

6 Rarely used, but available for those few cases where it is necessary. Similar
to Forward source-level sweep, except in the reverse direction. Use Reverse
source-level sweep when Forward source-level sweep returns an "out of
bounds" error. This error indicates that there is a negative resistance in the
circuit when all the DC sources are zero. This is a rare situation but can occur
with ideal models of oscillators, such as those described by the van der Pol
equation.

Hybrid
solver

7 Combination of various algorithms. Starts with Forward source-level sweep
with the source steps determined via heuristics. If this fails, Forward source-
level sweep with the source steps determined via homotopy/ continuation
methods is attempted. If this fails, Reverse source-level sweep with the
source steps determined via homotopy/continuation methods is attempted. If
this fails, Rshunt sweep is attempted. If this fails, Gmin relaxation, where a 1
Mohm resistor is inserted from each node to ground and then swept to
infinity, is attempted.

Pseudo
transient

8 Variant of the source stepping algorithm. Performs a transient simulation on a
pseudo circuit derived from the original circuit. The transition from the zero
solution to the final solution is of no interest in this analysis, so the truncation
error is ignored and the timestep is taken as large as possible. After this
pseudo transient analysis, a Newton-Raphson analysis is performed with the
pseudo transient solution as the initial guess. If this fails, a Newton-Raphson
analysis with Gmins of 1e-12 siemens inserted from each node to ground is
attempted. If this succeeds, the Gmins are removed and a Newton-Raphson
analysis with the Gmin solution as the initial guess is attempted.

† For more information about setting MaxDeltaV and DC_ConvMode for DC simulations,
see DC Simulation (cktsimdc).

 Setting Output Options

 Use the Output options described in the following table to select warnings options, as well
as to determine whether branch currents and node voltages will be saved. In the table,
names used in netlists and ADS schematics appear under Parameter Name.

Note
These Output options available in the Options component are not the same as the Output parameters used
in other simulation setup dialog boxes, such as HB, AC, etc., which are described in the section Selectively
Saving and Controlling Simulation Data.

Advanced Design System 2011.01 - Using Circuit Simulators

83

 Simulator Output Options

Setup Dialog Name Parameter Name Description

Warnings - If threshold limits are specified, the simulator will display the warning(s), in the
Simulation/Synthesis Messages window, the first time they are exceeded during a dc, harmonic balance or
transient simulation. For appropriate components, you may open the component dialog box to edit the
component, then specify threshold values. Most of the parameter names will begin with "w" for warning, and
some (but not all) will also include "max" in the name.

Issue warnings GiveAllWarnings Causes warning messages to be reported.

Maximum number of
warnings

MaxWarnings Sets the number of warnings desired.

Ignore shorts IgnoreShorts Allows the simulation to proceed in the presence of shorts.

Output filters

Save branch
currents

SaveBranchCurrents Creates a record of branch currents found by a simulation.

Save internal node
voltages

OutputInternalNodes Creates a record of internal node voltages found by a simulation.

Dataset Optimization(64-bit simulation only)

Faster DDS
performance (more
memory required)

DatasetMode=yes (Applies to 64-bit simulations only.) These options have no
effect for small- to medium-sized datasets, or with datasets with
fewer than 1000 variables in a single analysis. For large datasets
with 1000 or more variables in a single analysis, these options
can significantly affect simulation and DDS performance.
Normally, with large datasets, the data is optimized for faster
simulations and less memory consumption; this, however, can
cause the DDS to perform sub-optimally when large numbers of
variables are output in a single analysis. For this case, selecting
the "Faster DDS performance" can result in significantly faster
DDS performance, at the expense of a slower simulation and
increased simulation memory usage (note that, in some large
cases, simulation memory usage can increase as much as 1GB,
but typical memory increases are often in the range of a couple
to a few hundred megabytes).

Slower DDS
performance (less
memory required,
default)

DatasetMode=no

Note
 A resistor has threshold parameters for wPmax and wImax, for maximum power and current dissipation,
respectively (all such settings begin with "w," which signifies a warning will be issued in the
Simulation/Synthesis Messages window). Some components also check voltages. A BJT has eight
threshold settings. All diodes, transistors, FETs, resistors, capacitors, current probes, and shorts contain
threshold parameters.

 Setting DC Solution Options

 You can save the complete DC solution to a file and then re-use it as an initial guess in
further simulations. For large circuits or those with time-consuming DC simulations, this
can save a significant amount of CPU time by avoiding the needless repetition of the same
or similar simulations each time. This applies to any simulation that either performs or
relies on a DC solution, which includes all simulations with nonlinear elements.

 For example, once a DC solution is obtained by running an AC simulation, future AC
simulations at different frequencies or linear noise simulations do not have to re-simulate
to get the same DC solution again. If the circuit is changed, either via a parameter change
or even a topology change that will change the DC solution, this saved DC solution can
still be used as an initial guess for the new DC solution. If the circuit change was not too
extensive, then having a reasonable initial guess usually will still reduce the total re-
simulation time. If the circuit change is so extensive that the simulation cannot converge
using the supplied initial guess, then the simulator will proceed with its normal DC
simulation algorithm. In this case, it would save CPU time to disable the Use Initial Guess.

If the circuit topology has changed between the time the solution file was created and
when it is used as an initial guess, the simulator will still attempt to use as much of the
data as possible. It will also output various messages, if desired, noting what has changed
between the two versions. While this feature does not check for parameter changes, it can
be a useful tool for comparing the topology of two circuits, or to identify what has changed
since the solution was last saved. Items checked include the total number of equations
(nodes and branches), the total number of instances and their names, and most
connectivity changes.

For information on initial guess and final solution options available in the Harmonic

Advanced Design System 2011.01 - Using Circuit Simulators

84

Balance simulation controller, see Setting Up the Initial Guess (cktsimhb).

Use the DC Solutions options in the following table to select options for saving DC
solutions. In the table, names used in netlists and ADS schematics appear under
Parameter Name.

 Simulator DC Solutions Options

Setup
Dialog
Name

Parameter Name Description

Initial Guess

Use initial
guess

DC_ReadInitialGuess Instructs the simulator to read the input file and use it as an initial guess
for any DC solve. If a file name is not supplied (DC_InitialGuessFile), a
file name is internally generated using the design name, followed by a
.dcs suffix. If a file name is supplied, the suffix is neither appended nor
required.

File DC_InitialGuessFile File name for initial guess file.

Annotate InitialGuessAnnotation Enables you to select a detailed record (2), a summary (1), or none (0).

Final Solution

Write
final
solution

DC_WriteFinalSolution Instructs the simulator to write the final DC solution to the output file. If a
file name is not supplied (DC_FinalSolutionFile), a file name is internally
generated using the design name, followed by a .dcs suffix. If a file name
is supplied, the suffix is neither appended nor required. If this box is
checked, then the last DC solution is output to the specified file. If this is
the same file as that used for the initial guess, this file is updated with the
latest solution. If a swept analysis is being performed that changes the
DC solution, you will either want to not write a final solution or use two
different file names for the initial guess file and the final solution file.

File DC_FinalSolutionFile File name for final solution file.

 Setting Threading Options

Use the Threading options to control the number of physical threads (processors or cores)
used by the simulator, and to enable use of the graphics processor unit (GPU)
acceleration. By default, the simulator runs in the multi-threaded mode using the
maximum number of physical threads available, and the GPU is not used. You can disable
threading or limit the number of physical threads, and enable GPU acceleration by setting
the threading options.

Use the Threading options listed in the following table to set the number of threads, and
enable the GPU acceleration. In the table, names used in netlists and ADS schematics
appear under Parameter Name.

 Simulator Threading Options

Setup Dialog
Name

Parameter
Name

Description

Threading

Auto NumThreads=0 Simulator uses all available physical threads (default).

Disable NumThreads=1 Simulator runs in the single-thread mode.

Custom NumThreads=N User sets the number of physical threads that the simulator will use. When
setting a custom value for NumThreads directly on the schematic, N≥1. If N
is larger than the number of available CPUs, then the simulator uses the
maximum number of available CPUs.

GPU
Acceleration

GPU
Acceleration

GPU When disabled (GPU=0) the simulator does not use a GPU for acceleration
(default).
When enabled (GPU=1) the simulator uses a GPU for acceleration. Only the
GT200 class or newer NVIDIA GPUs are supported; older GPUs and GPUs
from other manufacturers are not supported. Supported GPUs include the
GTX280, Tesla C1060, and Tesla S1070. You must install the latest CUDA 2.0
driver and toolkit (the SDK is not required). These can be obtained directly
from NVIDIA at http://www.nvidia.com/object/cuda_get.html .

 Known Limitations

Threading
DC, Transient, Convolution, and Harmonic Balance simulations are multi-

http://www.nvidia.com/object/cuda_get.html
http://www.nvidia.com/object/cuda_get.html

Advanced Design System 2011.01 - Using Circuit Simulators

85

threaded and achieve speed-up on multi-core (or multiple processor) computers.
Nonlinear Noise simulation is partially threaded.
DC and Transient Multi-threading will be disabled automatically for Ptolemy
cosimulation. Harmonic Balance and Convolution will not be affected.
If a circuit contains a combination of Transient and Harmonic Balance simulation
controllers, the Transient threading will be disabled automatically. Harmonic
Balance will be multi-threaded by default.
Harmonic Balance multi-threading is beneficial for larger circuits.

GPU Acceleration
GPU acceleration only works in transient analysis for circuits containing BSIM4
transistors.
GPU acceleration is supported only on 64-bit Linux platforms.

 Setting Fast Linear Simulation Options

 This section describes a number of parameters which can be used to help speed up small
signal linear AC analysis and convolution based analyses containing a number of large SnP
components.

Dialog Setup
Name

Parameter
Name

Description

Enable fast linear
simulation

doDeltaAC Incremental Simulation techniques are used to speed-up Linear simulation
(AC and S-Parameter) for fully linear circuits. This parameter is set to ‘yes’
by default.

Reduce Large Snp
for convolution
analysis

ReduceSPort When this parameter is set to true, the simulator will reduce all large SnP
based data files and momentum components for convolution based
analyses. There will be a simulation speed up if the simulator determines it
can reduce some of the unconnected SnP ports.

 TSMC Safe Operating Area (SOA)

SOA messages are controlled by the following two parameters:

Parameter Name Description Default

WarnSOA Causes SOA warnings to be reported yes

MaxWarnSOA Sets the maximum number of SOA warning that will be reported 5

Note
The SOA parameters are by default not shown on the schematic. To change the value of the SOA
parameters, first make them visible on the schematic (through setting the corresponding check-boxes in
the Display tab). Once the parameters are visible, they can be directly modified on the schematic.

 Displaying Simulation Parameters on the Schematic

You can reduce screen clutter by displaying on the schematic only the parameters you are
interested in. Whether a parameter is displayed or not does not affect its functionality.
However, some parameters must be displayed to be used.

 DC Simulation Display Options

Display

Display parameter on schematic-Enables you to set the visibility of simulation parameters on the schematic.

Set All-Use this option to quickly select all parameters, and then deselect those you do not want to
display.
Clear All-Use this option to quickly deselect all parameters, and then select only those you want to
display.

 Using the Simulation Setup Dialog
This section discusses how to use the Simulation Setup dialog box to modify the following
settings before running a simulation:

Dataset name
Data Display name and opening the Data Display when the simulation completes
Simulation control mode: local, remote, or distributed

Advanced Design System 2011.01 - Using Circuit Simulators

86

By default, the cell name is used for the dataset and data display names, and the
simulation is performed locally. If you want to change any of these settings, modify them
in the Simulation Setup dialog box.

To open the Simulation Setup dialog box from the Schematic window, select Simulate >
Simulation Setup:

On the Setup tab1.
Set the Dataset and Data Display options. For details, see Setting the Dataset
and Data Display Options.
Choose the Simulation mode: Local, Remote, or Distributed. For details, see
Setting Up the Simulation Mode
Choose the Hierarchy Policy: Standard, Only Schematic, or Only Layout

If you set Simulation mode to Remote or Distributed:2.
Set the corresponding options on the Remote or Distributed tabs.
Options set on the Setup tab are ignored for LSF or Sun Grid Engine remote
simulations. For details, see Setting the Dataset and Data Display Options.

At any time while you make changes, click Apply, or if the simulation is ready to run,3.
click Simulate.

 Setting the Dataset and Data Display Options

When you run a simulation, the results are stored in a dataset. This dataset is then used
by the Data Display for viewing results. You can select the name and location of the
dataset you want to use for a simulation.

Notes

If you set Simulation mode to Remote and set Job management on the Remote tab to LSF or Sun
Grid Engine, the options set on the Setup tab are ignored:

The dataset file name is not read from the Setup tab; instead, LSF or Sun Grid Engine job
name will be used. For details, see LSF Remote Simulation (cktsim) or Sun Grid Engine
Remote Simulation (cktsim).
If Open Data Display when simulation completes is selected, the Data Display will not
open automatically and the Data Display name is not read. You will need to open the Data
Display manually after a simulation. See Data Display Basics (data).

For Local simulations or ADS remote simulations, if you accept the default dataset name and
perform multiple simulations, the dataset will be overwritten each time. To collect separate datasets
for each simulation, specify a unique name (for the dataset you are about to create) prior to each
simulation.

To specify the names for a dataset and data display prior to simulating, choose Simulate
> Simulation Setup.

By default, the cell name of the schematic being simulated will be the dataset name.1.
If you want a non-default dataset name uncheck the Use cell name box. In the2.
Dataset field, enter the name of the dataset where you want simulation data to be

Advanced Design System 2011.01 - Using Circuit Simulators

87

saved. Click Browse to view existing dataset names in the current workspace.
Supply a name in the Data Display field, or accept the default name.3.

Setup Dialog
Name

Description

Dataset This is the name for the dataset where simulation results are saved. The default value is the
cell name. Datasets are stored in a workspace /data subdirectory. Click Browse to select
from existing dataset file names. When using an existing name, new results overwrite
existing contents. This means that you should provide unique names for the datasets that
will be generated from different cells in the same workspace directory.

Data Display This is the file name for the data display. The default value is the current cell name. Click
Browse to select from existing data display files. The name you specify here will be the title
of the Data Display window that is opened. It will also be the default file name if you choose
Save As from the Data Display window.

Open Data
Display when
simulation
completes

When this option is selected, the data display window opens when the simulation finishes.
For details see Automatically Displaying Simulation Data.

Hierarchy Policy For more details see Hierarchy Policy (cktsim).

 Setting Up the Simulation Mode

The simulation mode sets whether a simulation is controlled locally or remotely.

To set the simulation mode:

Open the Simulation Setup dialog box. In a Schematic window, select Simulate >1.
Simulation Setup.
When the Simulation Setup dialog box appears, select the Simulation mode2.
depending on the simulation requirements: Local, Remote, or Distributed.

To simulate on the local machine, set Simulation mode to Local.
To simulate on a remote machine, set Simulation mode to Remote, and set the
Job management option on the Remote tab. Job management can be ADS, LSF
(Load Sharing Facility), or Sun Grid Engine. For details, see Circuit Remote
Simulation (cktsim).
To break up your sweep and simulate individual parts simultaneously on remote
machines, set Simulation mode to Distributed. Distributed simulation requires
the LSF utility. On the Distributed tab, set the Sweep Variable values. For
details, see Distributed Remote Simulation (cktsim).
To break up a signal processing BER simulation over multiple hosts, set
Simulation mode to Distributed. On the Distributed tab, select Parallel BER
and enter a value for Number of Partitions to set the number of hosts to be
used. For details, see Distributed Remote Simulation (cktsim).

Notes
Beginning with ADS 2008 Update 2, when using LSF and Sun Grid Engine on a cluster
environment, you have the option to run simulations in batch mode or queue additional
simulations. This enables you to perform other ADS tasks after sending a simulation job
to your job management system. You no longer need to wait for the job to finish before
you begin working on another cell or add more jobs to the queue.
The LSF utility is required for remote and distributed simulations using LSF. The Sun
Grid Engine utility is required for remote simulations using the Sun Grid Engine. Please
contact your system administrator for your system configuration.
For more information about controlling remote simulation using ADS, see ADS Remote
Simulation (cktsim).
Taking advantage of the LSF utility requires the installation of the software and
configuration of the necessary files/machines. For details on setting up your remote and
local machines to use LSF, see LSF Remote Simulation (cktsim).

 Sweeping Parameters
 Most simulations are performed over a range of values instead of just a single point. You
can sweep over time or frequency (depending upon the type of simulation) or you can
elect to sweep over another parameter. For ADS, you can sweep one or more parameters
using the following methods:

You can set the sweep range of time, frequency, or a single other parameter (under
the Sweep tab for a given simulator controller).
You can use the ParamSweep and SweepPlan components for sweeping more than
one parameter, or sweeping over more than one range of values. These components
appear on all simulation palettes. For details about using on using these components,
see Parameter Sweeps and Sweep Plans (cktsim).

Advanced Design System 2011.01 - Using Circuit Simulators

88

If using the Load Sharing Facility (LSF) utility, you can break up a sweep and run the
simulation on multiple machines, in parallel, by selecting Parallel Hosts as the Simulation
Mode (Simulate > Simulation Setup). Individual sweep points are run on each machine
and the results are combined into a single dataset on the local machine. For details on
setting up remote and local machines for remote processing, see Circuit Remote
Simulation (cktsim).

 Optimizing a Design
You can set up nominal optimizations or statistical yields as part of a simulation. These
features require a separate license. For complete information, see the Tuning,
Optimization, and Statistical Design (optstat) documentation.

 Working with Expressions
 You can add variables, functions, and conditional statements to a schematic, making your
designs more flexible and versatile.

You can use these items:

In component parameter definitions. From the component parameter editing dialog
box, select the parameter and, if available, click Equation Editor. You can write an
expression that defines this parameter.
In variables. Variables can be added to a schematic using the VAR (VarEqn)
component, which can be found in the Data Items palette. Once a variable is defined,
it can be used in expressions within the design.

 You can also add measurements to a schematic. Measurements are predefined functions
that process data so that it can be presented in the Data Display. There are numerous
predefined measurements under the simulation palettes, but you can also create your own
using the MeasEqn component. For more information on how to use measurements, see
Measurement Expressions (expmeas).

 Expressions Examples

Many of the workspaces in the Examples directory use variables and measurements. One
example that includes many variable definitions plus conditional statements is
NADC_PA_Test in RF_Board/NADC_PA_wrk.

 Running a Simulation and Controlling Simulation
Data
To run a simulation, choose one of the following in the Schematic window:

From the menu bar, choose Simulate > Simulate.
From the tool bar, click the Simulate icon.
After using the Simulation Setup dialog box to set up a simulation, click Simulate.
(For details about the simulation setup options, see Using the Simulation Setup
Dialog.)

 Automatically Displaying Simulation Data

 When setting up your simulation (Simulate > Simulation Setup, in the Schematic
window), you can enable an automatic display of your results.

Select the Open Data Display when simulation completes option to force a Data
Display window to open automatically when the simulation is complete. The data display
that appears in that window depends on the simulation setup and the status of display

Advanced Design System 2011.01 - Using Circuit Simulators

89

templates:

If you specify the name of an existing display to open, that display is opened.
If you specify a new name, then a blank Data Display window opens.
If one or more data display templates are associated with the current design, then
the Data Display window opens and inserts each template on its own page. A data
display template can be associated with a design in one of two ways:

By default, if your design includes a supplied schematic template, and a data
display template is associated with that schematic template.
Explicitly, if you create your own data display template (File > Save As
Template in the Data Display window) and associate that template with your
design via the DisplayTemplate component. (See the next section, Using a
DisplayTemplate Component)

If none of the above criteria are met, but you select the option, then a blank Data
Display window opens.

 Using a DisplayTemplate Component

 The DisplayTemplate component (available from most simulation libraries) enables you to
associate one or more data display templates with a given design. (If you include one of
the supplied schematic templates in your design, it most likely has a data display template
associated with it.)
The starting point of this procedure assumes you have already created a data display file
for use as a template, by setting up the Data Display window as desired and choosing File
> Save As Template.
To associate a data display template with the current design:

Place a DisplayTemplate component in the Schematic window.1.
Select String and Reference as the Parameter Entry Mode.2.
Enter the name of the template (the file name you supplied in the Data Display3.
window) and click Add.

Hint
You can specify multiple templates for the same data display and subsequently access them from
the Page menu).

When you are through specifying display templates for the current design, click OK.4.

 Manually Displaying Simulation Data

If you do not want the Data Display window to open automatically, disable the option
Open Data Display when simulation completes in the Simulation Setup dialog box.
To open a new window for displaying and manipulating data:

Choose Window > New Data Display from the Main, Schematic, or Layout
windows.

To save a graph for later viewing/manipulating:

Choose File > Save.

To save a graph for use as a template:

Choose File > Save As Template.

To open a previously saved data display:

Choose Window > Open Data Display from the Main, Schematic, or Layout1.
windows. In the dialog box that appears, the path is automatically set to the current
workspace directory and the filter displays all saved graphs (*.dds).
Double-click the graph you want to open or select it and click OK.2.

For details on working with simulation data, see Data Display (data).

 Selectively Saving and Controlling Simulation Data

Advanced Design System 2011.01 - Using Circuit Simulators

90

 The Output tab in all A/RF analysis components can be used to create an Output Plan,
which controls the data that will be saved to the dataset. You can control output
generated from named nodes, buses, measurement and VAR equations, and branch and
pin currents. By default, all named nodes up to two levels below the top level are saved.
The data from all measurement equations and components with the parameter
SaveCurrent set to yes are also saved. You can also control the saving of data using the
hierarchy level for nodes, measurement equations, and branch/pin currents, by selecting
specific names for which to save data, or a combination. Such control enables you to
control the size of the dataset. Saving by hierarchy usually saves lots of data generating a
large dataset. Saving by name enables you to limit the dataset size.

Note
The Output tab described in the section is used in the simulation dialog boxes, such as DC, HB, AC, etc. It
is not the same as the Output tab used in the Options component, which is described in the section
Setting Output Options.

To modify the default behavior of sending data to the dataset:

Edit the analysis controller item, and select the Output tab.1.

To output named nodes, measurement equations, branch currents, and pin
currents in the top-level design only, select the Node Voltages, Measurement
Equations, Branch Currents, and/or Pin Currents options and use 0 as the
Maximum Depth.
To output named nodes, measurement equations, branch currents, and pin
currents in the top-level design and one or more levels in the hierarchy, select
the Node Voltages, Measurement Equations, Branch Currents, and/or Pin
Currents options and set the desired Maximum Depth.
To output named nodes, measurement equations, and pin currents selectively,
irrespective of the hierarchy, disable the Node Voltages, Measurement Equations
, and/or Pin Currents options in the Save by hierarchy section and use the Save
by name section to select only those nodes/equations you want to output. (Click
Add/Remove to open the Edit Output Plan dialog box.)

Advanced Design System 2011.01 - Using Circuit Simulators

91

Note
Branch currents cannot be saved by name.

If using the Save by hierarchy method, select the desired level of hierarchy and click2.
OK.
If using the Save by name method (which can be used alone or in conjunction with a3.
specified level of hierarchy), click Add/Remove.
The Edit Output Plan dialog box appears with a list of available nodes, equations, and
pins in the Available Outputs list box as shown in the following figure.

Note
Buses appear in the list box as nodes. They do not contain any indices (as they do in the design
environment). Individual components of a bus cannot be output.

Select each individual node, equation, or pin from the Available Outputs list, then4.
click Add to move each to the Current Selection list box as shown in the figure
above.

Tip
To select and add multiple names, press Ctrl while selecting names.

Each selected node is sent to the dataset and saved for each iteration (time,
frequency) for the next simulation. Selected nodes will be stored in the
parameter NodeName[i] on the schematic.
Each selected equation is sent to the dataset and saved at the end of the next
simulation. Selected equations will be stored in the parameter
SavedEquationName[i] on the schematic.
Each selected pin is sent to the dataset and saved at the end of the next
simulation. Selected pin currents will be stored in the parameter
DeviceCurrentName[i] on the schematic.

Individual equations appearing in the Current Selection list box can be saved for each5.
iteration (time, frequency) of the next simulation. Select an equation in the Current
Selection list box and check the option Evaluate equation at each analysis point.
The following figure shows this option enabled for VDC.
The option must be checked separately for each equation appearing in the list. The
checked equation will be stored in the parameters SavedEquationName[i] and
AttachedEquationName[i] on the schematic.

Advanced Design System 2011.01 - Using Circuit Simulators

92

Notes
A non-selected equation may still be output depending on the Maximum Depth setting, but all
data will be processed at the end of all simulation iterations, requiring more memory.
If an equation is selected for any one simulation, it will not be output for any other simulation
for which it is not explicitly selected.

Click OK to accept all changes. The selected nodes, equations, and pins are then6.
displayed in the Save by name section on the Output tab.
Make any other desired changes for this analysis and click OK.7.

 Output Parameters for Simulation Controllers

This section describes additional details about the options available on the Output tab
including interactions.

Use the options available on each simulator controller's Output tab described in the
following table to selectively save and control simulation data. In the table, names used in
netlists and schematics appear under Parameter Name.

 Simulation Controller Output Parameters

Setup Dialog Name Parameter Name Description

Save by hierarchy Enables you to save the data in the active
hierarchical designs. To output named
nodes, measurement equations, branch
currents, and pin currents in the top-level
design only, select the Node Voltages,
Measurement Equations, Branch Currents,
and/or Pin Currents options and use 0 as the
Maximum Depth.

To output all named nodes/measurement
equations in the top-level design and one or
more levels in the hierarchy, select the
option(s) and set the desired Maximum
Depth.

When you select options under Save by
hierarchy, all data from the specified levels
are output. Except for Pin Currents, you
cannot restrict it. However, you can add to
it, selectively, from lower levels in the
hierarchy using Save by name.

Node
Voltages

UseNodeNestLevel
NodeNestLevel

Select this option to save data for named
nodes. Enter value for Maximum Depth.

Measurement
Equations

UseEquationNestLevel
UseSavedEquationNestLevel
EquationNestLevel
SavedEquationNestLevel

Select this option to save data for
measurement and VAR equations. Enter
value for Maximum Depth.

Branch
Currents

UseCurrentNestLevel
CurrentNestLevel

Select this option to save data for branch
currents. Enter value for Maximum Depth.
Branch currents can only be saved by
hierarchy; they cannot be saved by name.

The setting for Branch Currents saved by
hierarchy interacts with the
SaveBranchCurrents parameter on the

Advanced Design System 2011.01 - Using Circuit Simulators

93

Options component's Output options to
control data output for all branch currents in
a simulation. The same Branch Currents
setting also interacts with the SaveCurrent
parameter for specific individual devices
(probes, shorts, spProbes, vsource).

Data output for all branch currents in
a simulation is controlled by
SaveBranchCurrents on the Options
component and the Branch Currents
setting on a simulation controller's
Output tab. This does not include
specific devices.

If SaveBranchCurrents is
disabled, data for branch
currents is not output regardless
of the setting for the Branch
Currents hierarchy control on a
simulation controller.
If SaveBranchCurrents is
enabled, data output for all
branch currents is determined
by the Branch Currents
hierarchy control on a
simulation controller:

If Branch Currents is
disabled, data is not
output.
If Branch Currents is
enabled, data is output
from the top hierarchy
level up to the Maximum
Depth subcircuit level. For
example, if the Maximum
Depth is set to 2 in the DC
controller, the branch
currents are output for
the hierarchy up to 2.
If the Maximum Depth is
set to -1, no branch
currents are output.

Data output for branch currents
controlled by specific devices depend
on the settings for each device's
SaveCurrent parameter and for the
Branch Currents hierarchy control
settings in a simulation controller.

If SaveCurrent = no for a
device, branch current data is
not output regardless how the
Branch Currents hierarchy
control is set in a simulation
controller.
If SaveCurrent = yes for a
device, data output for all
branch currents is determined
by the Branch Currents setting
in a simulation controller:

If Branch Currents is
disabled, data is not
output.
If Branch Currents is
enabled, its current is
output if it is within the
hierarchy control of the
simulation controllers. If
Maximum Depth is set to -
1 in the simulation
controller, then none of
the currents from the
specific devices are
output.

Pin Currents UseDeviceCurrentNestLevel
DeviceCurrentNestLevel
DeviceCurrentDeviceType

Select this option to save data for pin
currents. Enter value for Maximum Depth.
This option enables you save data for
selected device types All, Linear, Nonlinear.
If this option is disabled (the default
setting), or if it is enabled and the Maximum
Depth value is less than zero, no pin
currents are output except those selected in
Save by name.

Advanced Design System 2011.01 - Using Circuit Simulators

94

Save by name Identifies the names of individual nodes,
equations, and pins that you want to save to
a dataset. To output named nodes,
measurement equations, and pin currents
selectively, irrespective of the hierarchy,
disable the selected options in Save by
hierarchy and select individual names. You
can use either, or both, Save by hierarchy
and Save by name to control output to the
dataset. To revise the list of names, click
Add/Remove to open the Edit Output Plan
dialog. Branch currents cannot be saved by
name.

Add/Remove Nodes

NodeName[i]Equations

SavedEquationName[i]
AttachedEquationName[i]

Pin Currents

DeviceCurrentName[i]

Click Add/Remove to open the Edit Output
Plan dialog box. The Available Outputs list
corresponds to the node voltages,
measurement equations, and pin currents
included in the active design. You can
shorten the list of names by deselecting
Nodes, Equations, or Pin Currents.

Select names from Available Outputs and
click Add to copy names into the Current
Selection list. To remove selected names
from the list, select the name(s) and click
Remove. On the schematic, node names are
saved in NodeName[i], equation names are
saved in SavedEquationName[i], and pin
names are saved in DeviceCurrentName[i].

If you would like a selected equation to be
evaluated at each analysis point, choose the
equation name, then select Evaluate
equation at each analysis point. This name
is saved in AttachedEquationName[i].
Otherwise, equations are evaluated after the
analysis is finished.

When the Current Selection list is done, click
OK and the selections will be reflected back
on the Output tab in the Save by name list.

 Controlling a Simulation
 You can select how to start and end a simulation:

To start a simulation, choose Simulate from the Simulate menu. You can also start
one by clicking the Simulate button on the tool bar or by pressing F7.
To end a simulation before it is finished, choose Stop and Release Simulator from the
Simulate menu. This will release your simulation license. To end the simulation but
keep the license, choose Simulation/Synthesis > Stop Simulation from the Simulation
Message window.

You can add more than one simulation component to a schematic, and specify which
simulation to run (only one simulator can be active at a time):

To disable simulations that are not desired, choose Edit > Component >
Deactivate/Activate and click the appropriate simulation component.

For more information about deactivating simulation controllers, as well
deactivating/activating other components in your design, see
Activating, Deactivating, and Shorting Components (usrguide).

If using the Load Sharing Facility (LSF) utility, you can break up a sweep and run the
simulation on multiple machines, in parallel, by selecting Parallel Hosts as the Simulation
Mode (Simulate > Simulation Setup). Individual sweep points are run on each machine
and the results are combined into a single dataset on the local machine. You can also use
this utility to select the fastest available machine.

For details on setting up remote and local machines for remote processing, see Circuit
Remote Simulation (cktsim).

Advanced Design System 2011.01 - Using Circuit Simulators

95

 Simulating from a Layout
 Simulating a layout cannot be done directly from the Layout window; it involves a few
steps in the Schematic window. Essentially, you must treat the design as though it were a
subnetwork and place it in a higher-level design. To do this, you must create a symbol for
it (in the Schematic window).

To simulate a layout:

From the Layout window containing the design you want to simulate (in this example,1.
DesignB), choose Window > Schematic.
In the Schematic window for DesignB, create a symbol (Window > Symbol). The2.
number of pins must equal the number of ports on the design.
Switch back to the Schematic view (Window > Schematic) and choose File >3.
Design Parameters and select the option labeled Simulate from Layout
(SimLay).
Save the design.4.
From the Schematic window, create a new design (in this example, DesignA).5.
In the Schematic window for DesignA, open the Component Library and select and6.
place an instance of DesignB.
Place the desired simulation control items, as well as any substrate or equation7.
definitions, in DesignA and run the simulation from DesignA.

 Viewing DC Solutions
 After a simulation is finished, you can display DC node voltages and branch/pin currents
on the schematic. Because a DC simulation is part of most other types of simulations as
well, this feature is available for most simulations.

To view DC solutions, from the Schematic window, choose Simulate > Annotate DC
Solution. All node voltages and branch/pin currents of the last DC solution - which
was obtained from either the last explicit or implicit DC analysis - are displayed on
the schematic.
To erase the solutions from the schematic, choose Simulate > Clear DC
Annotation.

 Viewing Device Operating Point Data

Any simulation that includes a DC analysis produces DC operating point information for
most active and some passive devices in the circuit. This data includes currents, power,
voltages, and linearized device parameters of the selected device. An explanation of the
displayed parameters, if available, is under the model documentation in the Circuit
Component documentation.

To view device operating point data:

From the Schematic window, choose Simulate > Detailed Device Operating Point

Advanced Design System 2011.01 - Using Circuit Simulators

96

. Crosshairs appear. Click the component of interest. The details appear in a separate
window.
To view a condensed list of details, choose Simulate > Brief Device Operating
Point instead.
You can save device operating point data to a dataset for viewing in the Data Display.
Under the Parameters tab of most simulators, set the Device operating point level as
desired.

 Displaying Simulation Results
Most of the simulation results are viewed in the Data Display. You can set the Data
Display so that it automatically opens when a simulation is finished:

Choose Simulate > Simulation Setup.1.
Select the option Open Data Display when simulation completes.2.
Specify a data display file (.dds) and it will be opened in the Data Display window3.
when the simulation is finished.
The simulation templates include DisplayTemplate components. If your design
includes a simulation template and the automatic display option is enabled, then the
Data Display window will open with the corresponding display template.
If neither a data display file (. dds) is specified nor a template used, a blank Data
Display window is opened.

Subsequent simulations of the same schematic will not open a new window, but rather
bring the existing one to the foreground.

For information on how to work with the items in a Data Display window, see Data Display
(data).

There are also ways to view DC data directly from the schematic. You can view:

DC node solutions
DC operating point data

 Tuning

 ADS tuning capability enables you to change one or more design parameter values and
quickly see the effect on the output without resimulating the entire design. Multiple traces
generated from various tuning trials can be overlaid in the Data Display window. This can
help you find the best results and the most sensitive components or parameters more
easily.

Basic tuning consists of the following steps:

Build the design you want to tune.1.
Set up your simulation.2.
Simulate your design and verify that your simulation operates as expected.3.
Set up, display, and analyze your results in the Data Display window.4.
Choose Simulate > Tuning or click the Tune Parameters icon (tuning fork) on the5.

toolbar.
When the initial analysis is complete, the Tune Parameters dialog box appears.
Select each parameter you want to tune by clicking it on the schematic. The Tune6.
Parameters dialog box is updated with a new slider for each parameter selected.
Change the tunable parameter(s) by moving the slider(s), or clicking the up/down7.
arrows.
Update your schematic with the changes.8.

For complete details about tuning your design, see Tuning, Optimization, and Statistical
Design (optstat).

 Reusing Simulation Solutions

Advanced Design System 2011.01 - Using Circuit Simulators

97

 For some types of simulations, you can save a simulation solution, reusing it as an initial
guess in a later simulation. This can save time by avoiding repeating the same, or a very
similar simulation, on a design. Using a simulation solution as an initial guess can help the
subsequent simulation to reach a final answer faster. If you have made minor changes to
the design or simulation setup, reusing solutions can reduce CPU time.

You can save and reuse these types of simulation data:

 DC solutions-You can save the complete DC solution and reuse it for any type of
simulation that either performs or relies on a DC solution. For example, once a DC
solution is obtained by running an AC simulation, then future AC simulations at
different frequencies or linear noise simulations do not have to resimulate to get the
same DC solution again. This feature is available from the DC Solutions tab of the
Options component. For details, see Using the Simulator Options Component.
 Harmonic Balance solutions-You can save a harmonic balance solution and use it as
an initial guess for another harmonic balance simulation, large-signal S-parameter,
gain compression, or Circuit Envelope simulation. With the saved harmonic balance
solution, you can later perform a nonlinear noise simulation and use the saved
solution as the initial guess, removing the time required to recompute the nonlinear
harmonic balance simulation. Another use would be to use the initial harmonic
balance solution, then sweep a parameter to see the changes. For details, see
Reusing Simulation Solutions (cktsimhb).
 Harmonic Balance guess from a Transient simulation-Transient simulations can be
set to generate a harmonic balance solution that can then be used as an initial guess
for a harmonic balance simulation. For example, in circuits such as dividers, harmonic
balance usually cannot directly converge on a solution since multiple mathematical,
but useless, solutions exist. By first running a transient simulation and generating a
harmonic balance solution file that can then be used as an initial guess, the harmonic
balance simulation can converge to the desired solution. This feature is available
when setting up the Harmonic Balance or Transient controller. For details, see the
following documentation:
In Harmonic Balance Simulation (cktsimhb), see Transient Assisted Harmonic Balance
(cktsimhb).
In Transient and Convolution Simulation (cktsimtrans), see Using the Steady State
Detector and Transient Assisted Harmonic Balance (cktsimtrans).

Advanced Design System 2011.01 - Using Circuit Simulators

98

 Analog/RF Simulation Computations
and Convergence Criteria
Analog/RF simulation computes the response of a circuit to a particular stimulus by
formulating a system of circuit equations and then solving them numerically. Each
simulation technology accomplishes this analysis as follows.

 DC analysis

Solves a system of nonlinear ordinary differential equations (ODEs).
Solves for an equilibrium point.
All time-derivatives are constant (zero).
System of nonlinear algebraic equations.

 Transient analysis

Solves a system of nonlinear ordinary differential equations (ODEs).
Time-derivatives replaced with a finite-difference approximation (integration
method).
Sequence of systems of nonlinear algebraic equations (one system at each
timepoint).

 Harmonic Balance (HB)

Solves a system of nonlinear ordinary differential equations (ODEs).
Steady-state method.
Solution approximated by truncated Fourier series.
System of nonlinear ODEs becomes a system of nonlinear algebraic equations in the
frequency domain.

 Solving Nonlinear Algebraic Equations
Nonlinear algebraic equations are solved using the Newton-Raphson algorithm (Newton's
method) as follows.

Convert the problem to a sequence of systems of linear equations.1.
Quadratic convergence near the solution (error squared at each iteration).2.

 Common Circuit Simulation Methods

Advanced Design System 2011.01 - Using Circuit Simulators

99

 Backward Euler

First order method that assumes the solution waveform is linear over one time step
One-step method (needs one previous time point solution only)
Adapts faster to abrupt signal changes
Stable on all stable differential equations and some unstable ones.
Exhibits heavy numerical damping, increases loss
Require smaller time step to maintain accuracy

 Trapezoidal Rule

Second-order method, assumes the solution waveform is quadratic over one time
step
One-step method
May exhibit point-to-point ringing on circuits that have very small time constant
comparing to time step (stiff circuit)
Stable only on stable differential equations
Exhibits no artificial numerical damping

 Backward Difference Formulas (Gear's methods)

Multiple order polynomial over one time step
Only the first six orders are available in ADS
First order method is identical to backward Euler
Higher-order polynomials allow a larger time step without sacrificing accuracy, are
efficient for smooth waveforms
Higher order methods (order > 2) may exhibit stability problems on lightly damped
circuits
Second-order backward difference formula (Gear 2)
Two-step method
Stable on all stable differential equations and some unstable ones.
Exhibit some numerical damping

 Truncation Error

The error made by replacing the time derivatives with a discrete-time approximation.
This error is difficult to estimate and depends on the type of circuits and the time
steps.

 Local Truncation Error (LTE)

The truncation error made on a single step

 Global Truncation Error (GTE)

Maximum accumulated truncation error
The circuit with long time constant is sensitive to these errors
Logic and bias circuits are not sensitive to these errors

 Convergence Criteria
Newton's iteration is converged if the approximate solution first satisfies the Residue
criteria at the end of each Newton iteration and the Update criteria once the residue
criteria are satisfied.

 Residue criterion

Advanced Design System 2011.01 - Using Circuit Simulators

100

KCL satisfied to a given tolerance. This is enforced at each node and is
important when impedance at a node is small.

 Update criteria

Difference between the last two iterations must be small. This is important when
impedance at a node is large.

 Using Continuation Methods
Use continuation methods to provide a sequence of initial guesses that are sufficiently
close to the solution to assure Newton's method convergence.

Choose a natural or contrived continuation parameter which controls a modification of
the circuit
Step the continuation parameter from 0 to 1 (the original circuit configuration), using
the solution from the previous step as the starting point.

As long as the solution changes continuously as a function of the continuation parameter
and the steps are small enough, Newton's method will converge. Keep in mind though that
the first two methods, Source and gmin stepping, will fail if the continuation path contains
a limit point.

 Source Stepping

Uses a fraction of the source voltages and currents applied to the circuit as the
continuation parameter.

Turn off all sources when the continuation parameter equals 0.
Raise source levels to their final levels slowly, generating a sequence of circuit
configurations.
Use the solution from the previous configuration as an initial guess for the current
configuration.

 Gmin Stepping

Uses the continuation parameter to control the value of the gmin resistors

Start with a large gmin for an easy to compute solution because nonlinear device
behavior is muted by the presence of the small resistors.
End with very small gmins for resistors that are so large that they no longer affect
the circuit.
Remove the gmins to compute the final solution.

 Arc-Length Continuation

Works best for complicated continuation paths and limit points using a continuation
parameter that is a function of the arc-length parameter

Travel same distance at each step, as specified by the arc-length.
Increase or decrease the continuation parameter along the path in each step.

 Preventing Convergence Problems
 Convergence problems usually arise as a result of errors in circuit connectivity or
unreasonable (out of range) model or component values. Some of the steps you can take
are as follows.

Advanced Design System 2011.01 - Using Circuit Simulators

101

Turn on the topology checker (default is on). In ADS, set the topology checker mode
on the Options component's Misc tab.
Turn on warnings.(default is no). In ADS, set warnings on the Option component's
Output tab.
Act upon the messages in the Status window.
Eliminate small floating resistors (or increase I_AbsTol). Any error in computed
voltages for nodes with small resistors results in large error currents.
Avoid very large and very small resistances connected to a node. Large resistances
are lost during Jacobian construction due to numerical round-offs.

 Clearing Highlights from Items Causing Simulation Errors

 When an error occurs during simulation, a box is drawn around each item causing an
error. To clear all highlights, choose the Clear Highlighting command from the View
menu in the appropriate window.

Hint
The color of this identifying box is the Highlight color defined through Options > Preferences > Display.

Advanced Design System 2011.01 - Using Circuit Simulators

102

 Working with Data Files
Data files are ASCII text representations of circuit responses based on various settings of
independent variables. For instance the S-parameter response of an amplifier can be
captured against frequency and power variations in a .p2d data file. Some ADS
components, such as the AmplifierP2D_Setup and AmplifierS2D_Setup help create data
files. Other sources for data files are measurement instruments or other simulation tools
which output circuit responses in text form. Thus data files enable you to take data from
sources outside of Advanced Design System and apply it to workspaces within these
design environments.

The common purpose of all the various applications which require the use of data files, is
to generate the behavior of a specific component or a circuit based on simulated or
measured data points. Thus, data files allow the transfer of realistic parameter values to
simple components and also enable the modeling of components with complex behavior
such as black box and gray box models. Some examples of the use of data files are:

Using S-parameters to define the behavior of a linear black-box component
representing an attenuator, a filter, or a small-signal transistor. The S-parameters,
which are saved in a file, are used in conjunction with a component like the S2P. This
permits the creation of a realistic and customized 2-port network during an ADS
simulation.
Storing sets of transistor model parameters in separate files, and accessing them
automatically through the course of a simulation to define the behavior of the
transistor.
Defining the behavior of a complex nonlinear amplifier by using the gray-box
AmplifierS2D component and data saved in an S2D file. The small and large signal S-
parameters as well as noise parameters contained within the file can be used to
define the behavior of the amplifier during a simulation.

Besides data-file driven components, there are other user-defined models such as using
SDDs, FDDs, equation-based components, or the Model Builder which are discussed
elsewhere. This section focuses on how to use the various types of data files to define the
behavior of components and circuits in addition to providing a comprehensive
understanding of the classification and formats associated with the various types of data
files used by various components.

A data file is simply data in an ASCII text file, but there are several formats to choose
from depending on the application. When determining the type of data file to choose
please note:

The format you choose may depend on the type of data you have and where you
want to use the data. The table below lists supported file formats and examples of
where they are used.
The DataAccessComponent may be used to access the data from any data file
regardless of format and to use it with any component that accepts file-based
parameters. In this case, you need to make sure there is a logical relationship
between the data and how you intend to use it. For more information, see Using Data
Files, Datasets, and Data Access Components.

 Supported Data Formats
The following table lists the supported data formats with a brief description and a
reference to detailed information:

 Available File Format Types

Format Description Usage Details

Touchstone Format

SnP †,††

(.snp)
Small signal S, H, Y, Z, or G-
parameters. May also include
optional noise data (2 port data
only). Where n is the number of
ports from 1 to 99.

n-port S-parameter file (S n P)
components in the Data Items
Library.

Touchstone SnP
Format

Advanced Design System 2011.01 - Using Circuit Simulators

103

Impulse
(.imp)

ADS Impulse (.imp) files store multi-
port impulse responses of linear N-
ports. These files are the time-
domain analog of the frequency-
domain Touchstone format.

Data output from the
ImpulseWriter (Impulse Response
File Writer controller).

ADS Impulse File
Format

MDIF Formats

Discrete
(.dscr)

Discrete (indexed) tabular and
possibly statistical density data.

Components that accept file-
based parameters, link via the
DAC.

Discrete Format

Model MDIF Nonlinear model parameters. EE_BJT2_Model, JFET_Model, etc. Model MDIF Files

PDF ‡‡‡ (.pdf) User defined, piece-wise linear
probability density function data for
arbitrary distributions that are not
correlated.

With expressions in the Statistics
tab.

PDF Format

S2PMDIF
(.s2p)

Multi-dimensional 2-port, S, Y, Z, H,
G signal and optional 2-port noise
parameter (Fmin, Gopt, Rn) data.

With S2PMDIF, DAC, and
components represented by black
box statistical characterization.

S2PMDIF Format

P2D †,††

(.p2d)
Large-signal, power-dependent, 2-
port S, H, Y, Z, or G -parameters.

AmplifierP2D in the System -
Amps & Mixers library.

P2D Format

S2D †,††

(.s2d)
2-port S, H, Y, Z, or G-parameters
with forward gain compression and
optional noise and intermodulation
data.

Amplifier2 and AmpSingleCarrier
in the System-Amps & Mixers
library, AmplifierS2D in the
System-Data Models library.

S2D Format

IMT †† (.imt) Intermodulation product table of
mixer intermodulation products
between the LO and signal that
relates the mixer IM output level to
signal input level.

MixerIMT in the System - Amps &
Mixers library. MixerIMT Data in
the System-Data Models library.

IMT Format

SPW ††

(.ascsig text)
(.sig binary)

Time-domain voltage data file in
Cadence Alta Group SPW text and
binary formats.

TimeFile item in Timed Sources
and OutFile item in the Sinks
library.

SPW Format

TIM †† (.tim) Time-domain data. TimeFile item in Timed Sources
and OutFile item in Sinks library.

TIM Format

SDF ††,†††

(.sdf)
Time-domain voltage data file in
89600 file format.

TimeFile item in Timed Sources
and OutFile item in Sinks library.

See software
documentation for
the Agilent 89600.

GCOMP †† Gain compression data Amplifier and Mixer items in the
System - Amps & Mixers library.

Understanding
GCOMP Data

Generic MDIF
(.mdif)

Generalized multi-dimensional tables
unifying other MDIF formats. Use in
place of any specific MDIF.

AmplifierS2D, AmplifierP2D, or
any other MDIF example listed
above. Link via the DAC.

Generic MDIF

X-parameter
Generic
MDIF(.xnp)

X-parameter data in the Generic
MDIF format.

n-port X-parameter file (XnP)
components in Data Items
Library.

X-parameter GMDIF
Format

CITIfile Format

CITIfile ††† A general data format supported by
network analyzers. Capable of
storing multiple packages of multi-
dimensional data.

n-port S-parameter file (S n P)
components in the Data Items
Library.

CITIfile Data Format

Agilent IC-CAP Formats

DUT, MDL,
SET ‡,‡‡

Device under test (DUT), model
(MDL), and setup (SET) files from
the Agilent IC-CAP program. These
files can contain Measured,
Simulated, and/or Transformed
data.

Once the data is read into a
dataset, it can be used with any
component (for example, a
VtDataset source) that can read
data from a dataset.

See Agilent IC-CAP
documentation.

† When writing data from a dataset to a file, the variable names are limited to S,H,Y,Z or G, for example,
S[1,1], S[1,2], G[1,1], G[1,2]. The variable name is used to determine the type of data.
†† The first set of data in the dataset that matches the data type (name) will be output. It is not possible to
arbitrarily select which data will be output.
††† There are some specific problems with the current version in writing and/or reading this data format. On
the Agilent EEsof web site, refer to the Release Notes in Product Documentation and to Technical Support for
more information and workarounds (www.agilent.com/find/eesof).
‡ The Data File Tool can only read IC-CAP data.
‡‡ Only simple, scaled expressions with numbers or variables and one operator (either +, -, *, or /) are
supported for start, stop, step, and number of points parameters, for example, start= 1 GHZ or
stop=icmax/10.
‡‡‡ This format is not yet fully supported.
The COD, FIR, LAS, and SPE formats were obsolete when ADS 1.0 was introduced and are not used by the
application. The LIST2 and T2D formats are also obsolete.

For information about a particular component, refer to the documentation for Analog/RF or

http://www.agilent.com/find/eesof

Advanced Design System 2011.01 - Using Circuit Simulators

104

Signal Processing components, or click Help when editing component parameters.

 Making a Data File
You can create a data file using these methods:

Manually type the data into a text file using any text editor, being sure to follow the
formatting guidelines for the type of data file that you want.
Use the Data File Tool. The Data File Tool enables you to transfer data between
datasets and files that are in the following file formats: Touchstone, Measurement
data interchange format (MDIF), CITIfile, and IC-CAP. For learn about the Data File
Tool, see Reading and Writing Data Files.
Perform a P2D controller-based simulation using AmplifierP2D_Setup or
AmplifierS2D_Setup. The results of these simulations are saved to files in P2D and
S2D formats respectively, which can then be used with the AmplifierP2D or
AmplifierS2D. For more information on the P2D controller itself, see P2D Simulation
(cktsimp2d).

 Saving a Data File
When saving a data file, save it as an ASCII text file.

A data file does not require a particular extension, but you may want to use the
extension recommended for each format for identification purposes. These extensions
are given in the details describing each format. If you choose a different extension,
you must provide this information to the component you intend to use through the
File parameter of the component.

You can save the data file:

In the workspace's data directory. This is the default location if no path is provided to
the component using the file.
Any location, if you provide the full file path to the component. You provide this
information using the File parameter of the component.

For more information about the File parameter, place the component of interest on a
schematic, double-click to edit it, and click the Help button at the bottom of the dialog
box.

 Using Data Files, Datasets, and Data Access
Components
Both data files and datasets can contain data that you want to use with a component. You
can use either one, depending on your situation:

You may want the S-parameters from a simulated design. In this case, use the
dataset and a DAC to link the data to the component you want to use.
You may have S-parameter specifications from a component sheet. In this case, type
them into a data file.

You also want to consider the method of linking your data with the component of interest:

You have a data file, such as an .s2d, and you want to use it with a component that
can read such a file, such as the AmplifierS2D. No DAC is needed.
You have a dataset or data file, but the component you want to use doesn't read the
data directly. Use a DataAccessComponent to link the data file and component. The
component you choose must have the file-based option under the Parameter Entry
Mode or the parameter AllParams. For example, the BJTM1 model has the parameter
AllParams; the R component has the Parameter Entry Mode. For instructions on how
to use a DAC, see DataAccessComponent (Data Access Component) (ccsim) or
Schematic Capture and Layout (usrguide).

Advanced Design System 2011.01 - Using Circuit Simulators

105

 Reading and Writing Data Files
 Use the Data File Tool to import and export data between datasets and text files that are
in the following file formats:

Touchstone
Measurement data interchange format (MDIF)
CITIfile
IC-CAP

You can transfer data from a file into a dataset, or vice versa. One application is to
transfer data from a dataset to an MDIF file, for use with a specific type of component. For
example, a file in P2D format (P2D is one of several MDIF formats) containing S-
parameters can then be used by the P2D amplifier. Using the Data File Tool, you can write
S-parameters from a dataset to a file in P2D format. Another application is reading Agilent
IC-CAP data into a dataset to be used in conjunction with a component, such as a source,
that can read data from a dataset.

See the table above in Supported Data Formats for a list of the available file types, a
description of the file contents, and the component that uses the data. Be sure to review
the notes at the end of the table. The details about each file format are described later in
this topic.

 Starting and Exiting the Data File Tool

You can start the Data File Tool from a Schematic window or a Data Display Window.

From a Schematic window, choose Tools > Data File Tool. Or, click the Data File

Tool icon .
From a Data Display window, choose Tools > Data File Tool. Or, click the Data File

Tool icon .

To exit the Data File Tool, choose File > Exit from the menu bar.

 Parts of the Data File Tool

The following illustration shows the default appearance of the Data File Tool user interface
for a UNIX-based system when the Data File Tool is started.

The layout of the interface and names of the various elements vary with the task being
performed (read or write) and can also vary with the file format selected. Examples of this
variation in the appearance of the Data File Tool user interface is shown in the two
following figures.

 Figure: Data File Tool in Read Mode

Advanced Design System 2011.01 - Using Circuit Simulators

106

 Figure: Data File Tool in Write Mode

These are the more frequently used elements of the interface:

The Menu bar displays the menus that are available in the Data File Tool window.
The Dataset field lists the datasets in the current workspace. The selected dataset or

Advanced Design System 2011.01 - Using Circuit Simulators

107

the name of a new dataset is displayed in the Dataset name field.

 Reading a File

To read the contents of a file into a dataset:

From an open Data File Tool window, click Read data file into dataset.1.
Under File format to read, select one of the following file formats:2.

Touchstone
MDIF
Citifile
ICCAP

For the MDIF format, choose the appropriate sub-format from MDIF sub type.3.
Under Input file name, type in the file name if the file is in the workspace. If it is4.
not, click Browse to locate and select the file.
The data from the selected file will be written to a dataset. Enter a name in the5.
Dataset name field or select from the existing datasets in the Datasets list. If you
choose a dataset from the list, any data that is already stored in the dataset will not
be saved and will be overwritten with new data.
Click Read File to send the file contents to the dataset.6.

Note
The source file must not use any ADS reserved variables or non-ASCII characters. Use of such a file
can produce misleading results.

 Writing to a File

To write data to a file:

From an open Data File Tool window, click Write data file from dataset.1.
Under File format to write, select one of the following file formats:2.

Touchstone
MDIF
Citifile

For the Touchstone and MDIF formats, choose the appropriate sub-format from3.
Touchstone data type, or MDIF sub type.
Under Output file name, type in the file name you want to write to. It will be saved4.
in the workspace directory. If you want to save the file in a different location, click
Browse to select a location.
Under Complex data format, select the complex data format to be used in the file.5.
For Touchstone and MDIF files, under Frequency units, select the frequency units to6.
be used in the file.
Under Data notation format, select the data notation format to be used in the file.7.
Under Max resolution, select the maximum resolution to be used in the file.8.
The source of the data can be any dataset. It should contain data matching the file9.
format selected. Select an existing dataset from the Datasets list. Click View
Dataset to view the contents of the selected dataset.
Click Write to File to send the data to the file.10.

Note
If a dataset has just been created by reading a file, it might be necessary to click Update Dataset
List to see it appear in the list.

 Examples
You can find designs that use different data files in the Examples directory under
Data_comp_wrk and DataAccess_wrk.

Instructions for using a particular type of file with a component that is designed to read
the file (like an . snp file and SnP component) can be found in the remaining reference
sections.

Advanced Design System 2011.01 - Using Circuit Simulators

108

 Touchstone SnP Format
 These files contain small-signal G-, H-, S-, Y-, or Z-network parameters described by
frequency-dependent linear network parameters for 1- to 99-port components. The 2-port
component files can also contain frequency-dependent noise parameters. This data file
format is also known as Touchstone format.

An .snp file can be used with an SnP component to model the behavior of a linear model
using S-parameters. The file contains the S-parameters, the component is placed within
the schematic.

This section describes:

Choosing an .snp file for use with an SnP component
An overview of the SnP file
The basic SnP format
Adding noise to a 2-port Snp file
The basic SnP format applied to G-, H-, S-, Y-, and Z-parameters, plus examples of
each

 Linking an .snp File to an SnP Component

To link a file to the component:

Add an SnP component to your schematic. It can be found in the Data Items library.1.
Select the File parameter. Ensure that the Parameter Entry Mode is set to Network2.
Parameter File Name .
In the File Name field, enter the name of the file you want to use:3.

You can type the name directly in the field.
Click Data files list to locate a file in the current workspace (or any files located
based on the setting of the DATAFILES variable in de_sim.cfg).
Click Browse to locate a file outside the current workspace.
Click Copy template to select an example file that you can customize.

After you select a file, click Edit if you want to view the file or change its contents.4.

For instructions on how to set the remaining parameters, click Help in the open
component dialog box.

 Overview

SnP data files are ASCII text files in which data appears line by line, one line per data
point, in increasing order of frequency. Each line of data consists of a frequency value and
one or more pairs of values for the magnitude and phase of each S-parameter at that
frequency. Values are separated by one or more spaces, tabs or commands. Comments
are preceded by an exclamation mark (!). Comments can appear on separate lines, or
after the data on any line or lines. Extra spaces are ignored. Recommendations for
filenames are:

1-port: filename.s1p

2-port: filename.s2p

Up to 99 ports can be defined.

You can specify the following parameters in an .snp file:

 S = Scattering parameters

 Y = Admittance parameters

 Z = Impedance parameters

 H = Hybrid-h parameters

 G = Hybrid-g parameters

Advanced Design System 2011.01 - Using Circuit Simulators

109

Note
The mismatched port impedance is not supported by the ADS simulator. If a Touchstone file has the
input/output mismatch information in the header, it is ignored by the DAC and the SnP components, and a
default matching 50 ohm port impedance is used.

The following sections discuss the content and format of network parameter files as input
for circuit analysis.

 Basic SnP File Format

 The following example shows the general format for component data files. It consists of:

An option line
Data lines
Comments

 The Option Line

The option line, specifying the frequency units and the normalizing impedance, precedes
the data lines.
(freq_units parameter format R n)
<data line>
...
<data line>
where:

= The delimiter that tells the program you are specifying these parameters

freq_units = Sets the units. Options are GHz, MHz, KHz, or Hz.

parameter = Sets the desired parameter. Options are S, Y, Z, G, or H.

format = The format desired. Options are MA, DB, or RI.

R n = The reference resistance in ohms, where n is a positive number of ohms; which is the real
impedance to which the parameters are normalized.

In summary, the option line should read:

For .s1p files: # [HZ/KHZ/MHZ/GHZ] [S/Y/Z] [MA/DB/RI] [R
n]

For .s2p files: # [HZ/KHZ/MHZ/GHZ] [S/Y/Z/G/H] [MA/DB/RI] [R
n]

For .s3p/.s4p
files:

[HZ/KHZ/MHZ/GHZ] [S] [MA/DB/RI] [R
n]

where square brackets [...] indicate optional information; .../.../.../ indicates that you
select one of the choices; and, n is replaced by a positive number.

 Default Option Line

The default option line for component data files is:
GHZ S MA R 50

 Option Line Examples

Frequency in GHz, S-parameters in real-imaginary format, normalized 100 ohms:
GHz S RI R 100

Frequency in KHz, Y-parameters in real-imaginary format, normalized 100 ohms:
KHz Y RI R 100

Frequency in Hz, Z-parameters in magnitude-degree format, normalized to 1 ohm:
Hz Z MA R 1

Frequency in KHz, H-parameters in real-imaginary format normalized to 1 ohm:
KHz H RI R 1

Frequency in Hz, G-parameters in magnitude-degree, format normalized to 1 ohm:
Hz G MA R 1

Advanced Design System 2011.01 - Using Circuit Simulators

110

 Data Lines

Data lines contain the data of interest. A special format is used for 2-port data files where
all of the network parameter data for a single frequency is listed on one line. The order of
the network parameters is:

N11, N21, N12, N22

For 3-port or higher data files, the network parameters appear in the file in a matrix form,
each row starting on a separate line. A maximum of four network parameters (with 2 real
numbers for each) appear on any line. The remaining network parameters are continued
on as many additional lines as are needed.

The following sections describe the data-line format for single and multi-port components.

 Data-line Formats

When you type the data below the option line, the columns need not line up precisely like
those shown. The syntax for entering data is as follows:

1-port Component
Magnitude-Angle format:

(Columns: f Mag Ang)

 f |S11|

2-port Component
Magnitude-Angle format:

f |S11| <S11 |S21| <S21 |S12| <S12 |S22|

Real-Imaginary format:

f Re{S11} Im{S11} Re{S21} Im{S21} Re{S12} Im{S12} Re{S22} Im{S22}

dB-Angle format:
f 20log10|x11| <x11 20log10|x21| <x21 20log10|x12| <x12 20log10|x22|

where

x = S/Y/Z/H/G

f = Frequency

3-port Component
Magnitude-Angle format:

(Columns : f Mag Ang Mag Ang Mag Ang)

 f |S11| <S11 |S12| <S12 |S13| <S13

 |S21| <S21 |S22| <S22 |S23| <S23

 |S31| <S31 |S32| <S32 |S33| <S33

4-port Component
Magnitude-Angle format:

Advanced Design System 2011.01 - Using Circuit Simulators

111

(Columns : f Mag Ang Mag Ang Mag Ang Mag Ang)

 f |S11| <S11 |S12| <S12 |S13| <S13 |S14| <S14

 |S21| <S21 |S22| <S22 |S23| <S23 |S24| <S24

 |S31| <S31 |S32| <S32 |S33| <S33 |S34| <S34

 |S41| <S41 |S42| <S42 |S43| <S43 |S44| <S44

where:

f = Frequency

Mag = Magnitude of S-parameter Sij

Ang = Angle of S-parameter Sij

 Adding Comments to Data Files

You can document your data files by preceding a comment with the exclamation mark (!)
on any line. A comment can be the only entry on a line or can follow the data on any line.

 Adding Noise Parameters to an SnP File

 Noise parameters can be included in SnP 2-port data files. Noise data can follow G-, H-,
S-, Y-, or Z-parameters described for each frequency. The x values are data.

Each line of a noise parameter has the following five entries:

x1 x2 x3 x4 x5

where:

x1 = Frequency in units. The first point of noise data must have a frequency less than the frequency of the
last S-parameter frequency

x2 = Minimum noise figure in dB

x3 = Source reflection coefficient to realize minimum noise figure (MA)

x4 = Phase in degrees of the reflection coefficient (MA)

x5 = Normalized effective noise resistance. The system simulator requires this parameter to meet physical
requirements. If the user-supplied x5 value is less than allowed for this requirement, then the system
simulator will force this x5 value to the lowest physical limit.

 Sopt noise data in an SnP file must be expressed in a Magnitude/Angle (MA) format. The
simulator assumes that the Sopt noise data in an SnP file is specified in a MA format. This
is the only supported format for Sopt data in an SnP file. The complex format type
specified in the format line does not apply to the Sopt data specified in the Noise block.

The data file reader cannot determine if the numbers representing the Sopt data in the
SnP data file are expressed in MA format and not in dB or Real/Imag formats. It reads in
whatever numbers appear on the data line and processes them as if they are MA, without
issuing an error or warning message. If the Sopt data in the SnP data file is expressed in a
format other than MA, this can produce simulation data that look incorrect.

Note
The frequencies for noise parameters and network parameters need not match. The only requirement is
that the lowest noise-parameter frequency be less than or equal to the highest network-parameter
frequency. This allows the file processor to determine where network parameters end and noise
parameters begin.

The source reflection coefficient and effective noise resistance are normalized to the same
resistance as specified for the network parameters.

 Example File Containing Noise Data

This is an example of a data file with noise data:

! NEC710

GHZ S MA R 50

Advanced Design System 2011.01 - Using Circuit Simulators

112

2 .95 -26 3.57 157 .04 76 .66 -14

22 .60 -144 1.30 40 .14 40 .56 -85

! NOISE PARAMETERS

4 .7 .64 69 .38

18 2.7 .46 -33 .40

 Applying the SnP Format, and Examples

 In this section are formatting references and examples for:

G-parameter files
H-parameter files
S-parameter files
Y- and Z-parameter files

 Guidelines

The optimum source reflection coefficient and the normalized effective noise
resistance are assumed to be with respect to the normalizing resistance value
(appearing after the R keyword) on the header line.
The frequencies for noise parameters and G-, H-, S-, Y-, or Z-parameters (network
parameters) do not have to match. The only requirement is that the lowest noise
parameter frequency be less than or equal to the highest network parameter
frequency. This allows the file processor to determine where G-, H-, S-, Y-, or Z-
parameters end and noise parameters begin. Please note that it is required
to have at least two lines of network parameters, when using noise parameters. With
only one line of network parameters and one line of noise parameters, the simulation
will result in the below error.

ERROR: Unable to read required data from touchstone file. Please ensure that the file is
ASCII and correctly formatted.

If you add a second line of network parameters, everything works fine.

 G-Parameter Files

G-parameter files (Hybrid-g parameters) use MA or RI format. They are strictly 2-port
files. G-parameter measurements are:

G11 input admittance (port 2 open)

G22 output impedance (port 1 shorted)

G21 forward voltage gain (port 2 open)

G12 reverse current gain (port 1 shorted)

G-Parameter MA and RI File Formats

frequency_unit G MA R impedance

freq magG11 angG11 magG21 angG21 magG12 angG12 magG22 angG22

frequency_unit G RI R impedance

freq reG11 imG11 reG21 imG21 reG12 mG12 reG22 imG22

G-Parameter File Example

! symbol freq-unit parameter-type data-format keyword impedance-ohms

KHZ G MA R 1

! freq magG11 angG11 magG21 angG21 magG12 angG12 magG22 angG22

 2 .95 -26 3.57 157 .04 76 .66 -14

 3 .93 -40 3.53 147 .05 69 .65 -20

 4 .89 -52 3.23 136 .06 62 .63 -26

Advanced Design System 2011.01 - Using Circuit Simulators

113

 H-Parameter Files

H-parameter files (Hybrid-h parameters) use MA or RI format. They are strictly 2-port
files. H-parameter measurements are:

H11 input impedance (port 2 shorted)

H22 output admittance (port 1 open)

H21 forward current gain (port 2
shorted)

H12 reverse voltage gain (port 1 open)

H-Parameter File Example

! symbol freq-unit parameter-type data-format keyword impedance-ohms

KHZ H MA R 1

! freq magH11 angH11 magH21 angH21 magH12 angH12 magH22 angH22

 2 .95 -26 3.57 157 .04 76 .66 -14

 3 .93 -40 3.53 147 .05 69 .65 -20

 4 .89 -52 3.23 136 .06 62 .63 -26

 S-Parameter Files

S-parameter files (scattering parameters) can have MA, RI, or DB format for files with 1 to
99 ports.

S-Parameter 1-Port MA, RI, and DB File Formats

frequency_unit S MA R impedance

freq magS11 angS11

frequency_unit S RI R impedance

freq reS11 imS11

frequency_unit S DB R impedance

freq dbS11 angS11

S-Parameter 2-Port MA, RI, and DB File Formats

frequency_unit S MA R impedance

freq magS11 angS11 magS21 angS21 magS12 angS12 magS22 angS22

frequency_unit S RI R impedance

freq reS11 imS11 reS21 imS21 reS12 imS12 reS22 imS22

frequency_unit S DB R impedance

freq dbS11 angS11 dbS21 angS21 dbS12 angS12 dbS22 angS22

S-Parameter 3-Port MA, RI, and DB File Formats

frequency_unit S MA R impedance

freq magS11 angS11 magS12 angS12 magS13 angS13 ! 1st row

 magS21 angS21 magS22 angS22 magS23 angS23 ! 2nd row

 magS31 angS31 magS32 angS32 magS33 angS33 ! 3rd row

frequency_unit S RI R impedance

freq reS11 imS11 reS12 imS12 reS13 imS13 ! 1st row

 reS21 imS21 reS22 imS22 reS23 imS23 ! 2nd row

 reS31 imS31 reS32 imS32 reS33 imS33 ! 3rd row

frequency_unit S DB R impedance

freq dbS11 angS11 dbS12 angS12 dbS13 angS13 ! 1st row

 dbS21 angS21 dbS22 angS22 dbS23 angS23 ! 2nd row

 dbS31 angS31 dbS32 angS32 dbS33 angS33 ! 3rd row

Advanced Design System 2011.01 - Using Circuit Simulators

114

S-Parameter 4-Port MA, RI, and DB File Formats

frequency_unit S MA R impedance

! 1st row

freq magS11 angS11 magS12 angS12 magS13 angS13 magS14 angS14

 magS21 angS21 magS22 angS22 magS23 angS23 magS24 angS24 ! 2nd row

 magS31 angS31 magS32 angS32 magS33 angS33 magS34 angS34 ! 3rd row

 magS41 angS41 magS42 angS42 magS43 angS43 magS44 angS44 ! 4th row

frequency_unit S RI R impedance

freq reS11 imS11 reS12 imS12 reS13 imS13 reS14 imS14 ! 1st row

 reS21 imS21 reS22 imS22 reS23 imS23 reS24 imS24 ! 2nd row

 reS31 imS31 reS32 imS32 reS33 imS33 reS34 imS34 ! 3rd row

 reS41 imS41 reS42 imS42 reS43 imS43 reS44 imS44 ! 4th row

frequency_unit S DB R impedance

freq dbS11 angS11 dbS12 angS12 dbS13 angS13 dbS14 angS14 ! 1st row

 dbS21 angS21 dbS22 angS22 dbS23 angS23 dbS24 angS24 ! 2nd row

 dbS31 angS31 dbS32 angS32 dbS33 angS33 dbS34 angS34 ! 3rd row

 dbS41 angS41 dbS42 angS42 dbS43 angS43 dbS44 angS44 ! 4th row

S-Parameter 1-Port File Example

! symbol freq-unit parameter-type data-format keyword impedance-ohms

MHZ S MA R 50

! freq magS11 angS11 (commented header line)

 2.000 0.894 -12.136

 3.000 0.893 -18.179

 4.000 0.891 -24.193

S-Parameter 5- to 99-Port File Formats

These file formats appear in a matrix form similar to the 3- and 4-port files, except that
only four S-parameters (with 2 real numbers for each) can appear on a given line.
Therefore, the remaining S-parameters in that row of the S-matrix continue on the next
line of the file.

Each row of the S-matrix must begin on a new line of the file. The first line of the first row
of the S-matrix begins with the frequency value.

S-Parameter 10-Port File Example (at One Frequency)

frequency_unit S MA R impedance

freq magS11 angS11 magS12 angS12 magS13 angS13 magS14 angS14 ! 1st row

magS15 angS15 magS16 angS16 magS17 angS17 magS18 angS18

magS19 angS19 magS1,10 angS1,10

magS21 angS21 magS22 angS22 magS23 angS23 magS24 angS24 ! 2nd row

magS25 angS25 magS26 angS26 magS27 angS27 magS28 angS28

magS29 angS29 magS2,10 angS2,10

magS31 angS31 magS32 angS32 magS33 angS33 magS34 angS34 ! 3rd row

magS35 angS35 magS36 angS36 magS37 angS37 magS38 angS38

magS39 angS39 magS3,10 angS3,10

magS41 angS41 magS42 angS42 magS43 angS43 magS44 angS44 ! 4th row

magS45 angS45 magS46 angS46 magS47 angS47 magS48 angS48

magS49 angS49 magS4,10 angS4,10

magS51 angS51 magS52 angS52 magS53 angS53 magS54 angS54 ! 5th row

magS55 angS55 magS56 angS56 magS57 angS57 magS58 angS58

magS59 angS59 magS5,10 angS5,10

magS61 angS61 magS62 angS62 magS63 angS63 magS64 angS64 ! 6th row

magS65 angS65 magS66 angS66 magS67 angS67 magS68 angS68

magS69 angS69 magS6,10 angS6,10

magS71 angS71 magS72 angS72 magS73 angS73 magS74 angS74 ! 7th row

magS75 angS75 magS76 angS76 magS77 angS77 magS78 angS78

magS79 angS79 magS7,10 angS7,10

magS81 angS81 magS82 angS82 magS83 angS83 magS84 angS84 ! 8th row

magS85 angS85 magS86 angS86 magS87 angS87 magS88 angS88

magS89 angS89 magS8,10 angS8,10

magS91 angS91 magS92 angS92 magS93 angS93 magS94 angS94 ! 9th row

magS95 angS95 magS96 angS96 magS97 angS97 magS98 angS98

magS99 angS99 magS9,10 angS9,10

!10th row

Advanced Design System 2011.01 - Using Circuit Simulators

115

magS10,1 angS10,1 magS10,2 angS10,2 magS10,3 angS10,3 magS10,4 angS10,4

magS10,5 angS10,5 magS10,6 angS10,6 magS10,7 angS10,7 magS10,8 angS10,8

magS10,9 angS10,9 magS10,10 angS10,10

Linear 1-Port (.s1p) File Example

GHZ S RI R 50.0

 1.00000000 0.9488 -0.2017

 1.50000000 0.9077 -0.3125

 2.00000000 0.8539 -0.4165

 2.50000000 0.7884 -0.5120

 3.00000000 0.7124 -0.5978

 3.50000000 0.6321 -0.6546

 4.00000000 0.5479 -0.7013

 4.50000000 0.4701 -0.7380

 5.00000000 0.3904 -0.7663

 5.50000000 0.3302 -0.7778

 6.00000000 0.2702 -0.7848

 6.50000000 0.2041 -0.7890

 7.00000000 0.1389 -0.7878

 7.50000000 0.0894 -0.7849

 8.00000000 0.0408 -0.7789

 8.50000000 0.0134 -0.7649

 9.50000000 0.0654 -0.7471

 9.00000000 0.1094 -0.7319

 10.0000000 0.1518 -0.7140

Linear 2-Port (.s2p) File Example

GHZ S RI R 50.0

1.0000 0.3926 -0.1211 -0.0003 -0.0021 -0.0003 -0.0021 0.3926 -0.1211

2.0000 0.3517 -0.3054 -0.0096 -0.0298 -0.0096 -0.0298 0.3517 -0.3054

10.000 0.3419 0.3336 -0.0134 0.0379 -0.0134 0.0379 0.3419 0.3336

!Noise params

1.0000 2.0000 -0.1211 -0.0003 .4

2.0000 2.5000 -0.3054 -0.0096 .45

3.0000 3.0000 -0.6916 -0.6933 .5

4.0000 3.5000 -0.3756 0.4617 .55

5.0000 4.0000 0.3880 0.6848 .6

6.0000 4.5000 0.0343 0.0383 .65

7.0000 5.0000 0.6916 0.6933 .7

8.0000 5.5000 0.5659 0.1000 .75

9.0000 6.0000 0.4145 0.0307 .8

10.0000 6.5000 0.3336 0.0134 .85

Linear 3-Port (.s3p) File Example

GHZ S MA R 50.0

! POWER DIVIDER, 3-PORT

5.00000 0.24254 136.711 0.68599 -43.3139 0.68599 -43.3139

 0.68599 -43.3139 0.08081 66.1846 0.28009 -59.1165

 0.68599 -43.3139 0.28009 -59.1165 0.08081 66.1846

6.00000 0.20347 127.652 0.69232 -52.3816 0.69232 -52.3816

 0.69232 -52.3816 0.05057 52.0604 0.22159 -65.1817

 0.69232 -52.3816 0.22159 -65.1817 0.05057 52.0604

7.00000 0.15848 118.436 0.69817 -61.6117 0.69817 -61.6117

 0.69817 -61.6117 0.02804 38.6500 0.16581 -71.2358

 0.69817 -61.6117 0.16581 -71.2358 0.02804 38.6500

Linear 4-Port (.s4p) File Example

GHZ S MA R 50

5.00000 0.60262 161.240 0.40611 -42.2029 0.42918 -66.5876 0.53640 -79.3473

 0.40611 -42.2029 0.60262 161.240 0.53640 -79.3473 0.42918 -66.5876

 0.42918 -66.5876 0.53640 -79.3473 0.60262 161.240 0.40611 -42.2029

 0.53640 -79.3473 0.42918 -66.5876 0.40611 -42.2029 0.60262 161.240

6.00000 0.57701 150.379 0.40942 -44.3428 0.41011 -81.2449 0.57554 -95.7731

Advanced Design System 2011.01 - Using Circuit Simulators

116

 0.40942 -44.3428 0.57701 150.379 0.57554 -95.7731 0.41011 -81.2449

 0.41011 -81.2449 0.57554 -95.7731 0.57701 150.379 0.40942 -44.3428

 0.57554 -95.7731 0.41011 -81.2449 0.40942 -44.3428 0.57701 150.379

7.00000 0.50641 136.693 0.45378 -46.4151 0.37845 -99.0918 0.62802 -114.196

 0.45378 -46.4151 0.50641 136.693 0.62802 -114.196 0.37845 -99.0918

 0.37845 -99.0918 0.62802 -114.196 0.50641 136.693 0.45378 -46.4151

 0.62802 -114.196 0.37845 -99.0918 0.45378 -46.4151 0.50641 136.693

 Y- and Z-Parameter Files

 Immittance parameters are specified in MA or RI format, where the # line has Y for
admittance and Z for impedance. Both are normalized to the reference resistance.

 Y- (Z-) Parameter 1-Port MA and RI File Formats

frequency_unit Y MA R impedance

freq magY11 angY11

frequency_unit Y RI R impedance

freq reY11 imY11

 Y- (Z-) Parameter 2-Port MA and RI File Formats

frequency_unit Y MA R impedance

freq magY11 angY11 magY21 angY21 magY12 angY12 magY22 angY22

frequency_unit Y RI R impedance

freq reY11 imY11 reY21 imY21 reY12 imY12 reY22 imY22

 Y- (Z-) Parameter 3-Port MA and RI File Formats

freq magY11 angY11 magY12 angY12 magY13 angY13 ! 1st row

 magY21 angY21 magY22 angY22 magY23 angY23 ! 2nd row

 magY31 angY31 magY32 angY32 magY33 angY33 ! 3rd row

frequency_unit Y RI R impedance

freq reY11 imY11 reY12 imY12 reY13 imY13 ! 1st row

 reY21 imY21 reY22 imY22 reY23 imY23 ! 2nd row

 reY31 imY31 reY32 imY32 reY33 imY33 ! 3rd row

 Y- (Z-) Parameter 4-Port MA and RI File Formats

frequency_unit Y MA R impedance

freq magY11 angY11 magY12 angY12 magY13 angY13 magY14 angY14 ! 1st row

 magY21 angY21 magY22 angY22 magY23 angY23 magY24 angY24 ! 2nd row

 magY31 angY31 magY32 angY32 magY33 angY33 magY34 angY34 ! 3rd row

 magY41 angY41 magY42 angY42 magY43 angY43 magY44 angY44 ! 4th row

frequency_unit Y RI R impedance

freq reY11 imY11 reY12 imY12 reY13 imY13 reY14 imY14 ! 1st row

 reY21 imY21 reY22 imY22 reY23 imY23 reY24 imY24 ! 2nd row

 reY31 imY31 reY32 imY32 reY33 imY33 reY34 imY34 ! 3rd row

 reY41 imY41 reY42 imY42 reY43 imY43 reY44 imY44 ! 4th row

 Y- (Z-) Parameter 3-Port File Example

! symbol freq-unit parameter-type data-format keyword impedance-ohms

 # GHz Y MA R 1

!freq magY11 angY11 magY12 angY12 magY13 angY13 ! 1st line

! magY21 angY21 magY22 angY22 magY23 angY23 ! 2nd line

! magY31 angY31 magY32 angY32 magY33 angY33 ! 3rd line

 4 0.008 83.122 8.5e-04 -86.740 0.007 -98.037

 0.046 -12.740 0.005 36.580 0.049 171.554

 0.046 177.588 0.004 -152.638 0.050 0.134

Advanced Design System 2011.01 - Using Circuit Simulators

117

 8 0.016 79.068 0.002 -84.015 0.014 -102.924

 0.049 -23.015 0.006 52.828 0.051 164.123

 0.048 175.827 0.005 -139.640 0.052 -0.004

12 0.025 73.501 0.003 -81.736 0.023 -109.374

 0.058 -36.736 0.009 58.596 0.058 152.007

 0.055 169.129 0.007 -136.047 0.059 -5.349

18 0.036 65.138 0.004 -71.761 0.033 -119.900

 0.059 -54.761 0.013 72.274 0.052 137.118

 0.052 162.979 0.010 -121.976 0.055 -6.677

 Y- (Z-) Parameter 5- to 99-Port File Formats

These file formats appear in a matrix form similar to 3- and 4-port files. Only four Y-, or
Z-parameters (with 2 real numbers for each) can appear on a given line; therefore, the
remaining parameters in that row of the matrix continue on the next line of the file. Each
row of the Y-matrix must begin on a new line of the file. The first line of the first row of
the Y-matrix begins with the frequency value. The actual Y- (Z-) parameter value is
obtained by dividing (multiplying) the file entry with the reference resistance.

 Y- (Z-) Parameter 10-Port File Example (at One Frequency)

frequency_unit Y MA R impedance

freq magY11 angY11 magY12 angY12 magY13 angY13 magY14 angY14 ! 1st row

magY15 angY15 magY16 angY16 magY17 angY17 magY18 angY18

magY19 angY19 magY1,10 ngY1,10

magY21 angY21 magY22 angY22 magY23 angY23 magY24 angY24 ! 2nd row

magY25 angY25 magY26 angY26 magY27 angY27 magY28 angY28

magY29 angY29 magY2,10 angY2,10

magY31 angY31 magY32 angY32 magY33 angY33 magY34 angY34 ! 3rd row

magY35 angY35 magY36 angY36 magY37 angY37 magY38 angY38

magY39 angY39 magY3,10 angY3,10

magY41 angY41 magY42 angY42 magY43 angY43 magY44 angY44 ! 4th row

magY45 angY45 magY46 angY46 magY47 angY47 magY48 angY48

magY49 angY49 magY4,10 angY4,10

magY51 angY51 magY52 angY52 magY53 angY53 magY54 angY54 ! 5th row

magY55 angY55 magY56 angY56 magY57 angY57 magY58 angY58

magY59 angY59 magY5,10 angY5,10

magY61 angY61 magY62 angY62 magY63 angY63 magY64 angY64 ! 6th row

magY65 angY65 magY66 angY66 magY67 angY67 magY68 angY68

magY69 angY69 magY6,10 angY6,10

magY71 angY71 magY72 angY72 magY73 angY73 magY74 angY74 ! 7th row

magY75 angY75 magY76 angY76 magY77 angY77 magY78 angY78

magY79 angY79 magY7,10 angY7,10

magY81 angY81 magY82 angY82 magY83 angY83 magY84 angY84 ! 8th row

magY85 angY85 magY86 angY86 magY87 angY87 magY88 angY88

magY89 angY89 magY8,10 angY8,10

magY91 angY91 magY92 angY92 magY93 angY93 magY94 angY94 ! 9th row

magY95 angY95 magY96 angY96 magY97 angY97 magY98 angY98

magY99 angY99 magY9,10 angY9,10

!10th row

magY10,1 angY10,1 magY10,2 angY10,2 magY10,3 angY10,3 magY10,4 angY10,4

magY10,5 angY10,5 magY10,6 angY10,6 magY10,7 angY10,7 magY10,8 angY10,8

magY10,9 angY10,9 magY10,10 angY10,10

 ADS Impulse File Format
ADS Impulse (.imp) files store multi-port impulse responses of linear N-ports. For a
frequency domain N-port description:

,

.imp files provide a method of storing the time domain equivalent of,

,

Advanced Design System 2011.01 - Using Circuit Simulators

118

where hij(t) is the impulse response of matrix element Hij(ω).

ADS impulse files store discrete, uniformly sampled representations Impij(n) of impulse

responses hij(t) normalized by the sampling step, and optionally allow for explicit storage

of the impulse response delay, as illustrated in the following figure:

More specifically,

Impij(n)=hij(Td+nΔT)ΔT ,

where Td is the base delay and ΔT is the sample spacing.

.imp files are the time-domain analog of the frequency-domain Touchstone format. They
consist of comments, header lines and data lines, similar to Touchstone. Header lines
describe global settings while data lines describe impulse response matrices, as detailed
below.

 Comments

Comments are preceded by an exclamation mark (!). Comments may be placed at the
beginning or at the end of a line.

 Line Continuation

Carriage return is used as the line continuation character.

 Header Lines

Header lines consist of the Option line and the following keywords:

[Version]
[Number of Ports]
[Reference]
[Original Frequency Range]
[Time Step]
[Base Delay]

With the exception of the Option line, all keywords are enclosed in the square brackets.
Header lines, including keywords and the Option line, may appear in any order. Header
lines precede data lines and may not appear after the data section.

 The Option Line

The Option line specifies the network parameter type and the normalizing impedance. The
Option line format is:

parameter R n

where:

parameter = Network parameter type. Permitted values are: S, Y or Z

n = Optional S-parameter reference impedance, defaulting to 50Ω.

Advanced Design System 2011.01 - Using Circuit Simulators

119

 Option Line Examples

S-parameters impulse response, normalized to 100Ω:

S R 100.0

Y-parameter impulse response:

Y

Z-parameter impulse response:

Z

 [Version]

The [Version] keyword defines the version of the .imp file. The [Version] line is of the
form:

[Version] version

The initial version is 1.0. [Version] is optional and defaults to 1.0.

 [Version] Line Example

[Version] 1.0

 [Number of Ports]

The [Number of Ports] keyword defines the number of network ports. The [Number of
Ports] line is of the form

[Number of Ports] n

[Number of Ports] is mandatory.

 [Number of Ports] Line Example

[Number of Ports] 2

 [Reference]

The [Reference] keyword defines the port reference impedances for impulse data in S-
parameter form. The [Reference] line is of the form:

[Reference] ref1 ref2 ... refN

where ref1, ref2 ... refN define the reference impedance for each port.

This keyword is optional. If [Reference] is not present, the reference impedances are
defined by the Option line. If [Reference] is present, it must contain an entry for every
port (for example, a four-port data file using [Reference] must contain four [Reference]
impedance entries). If reference impedances are specified both using [Reference] and in
the Option line, the [Reference] line takes precedence.

 [Reference] Line Example

A two-port network with port 1 terminated into 75Ω and port 2 terminated into 75Ω:

[Reference] 75.0 75.0

 [Original Frequency Range]

This keyword defines the frequency range of the frequency domain network parameters
from which the .imp file was extracted. [Original Frequency Range] is optional. The line is
of the form:

[Original Frequency Range] minFreq maxFreq units

Advanced Design System 2011.01 - Using Circuit Simulators

120

where

minFreq = Lowest frequency

maxFreq = Highest frequency

units = Permitted units are: Hz, kHz, MHz, GHz, THz. Default units are GHz.

 [Original Frequency Range] Line Example

[Original Frequency Range] 0.05 20.0 GHz

 [Time Step]

The [Time Step] keyword defines the uniform sampling step for the impulse response.
This line is of the form:

[Time Step] timeStep units

where

timeStep = Sampling step.

units = Permitted units are: fsec, psec, nsec, μsec, msec and sec. Default units are sec.

The [Time Step] line is mandatory.

 [Time Step] Line Example

[Time Step] 1.0 nsec

 [Base Delay]

The [Base Delay] keyword defines the base delay of each impulse response. [Base Delay]
is of the form:

[Base Delay] baseDelay1 baseDelay2 ... baseDelayM units

where

baseDelay1, baseDelay2 ...
baseDelayM

= Base delays of each of the M impulse responses. For an N=port network,
M=N2. Base delays are ordered row-wise.

Units = Permitted units are: fsec, psec, nsec, μsec, msec and sec. Default units are
sec.

 [Base Delay] Line Example

If the impulse response matrix has the following hypothetical base delays:

Base delay (1,1) = 1.0 nsec
Base delay (1,2) = 2.0 nsec
Base delay (2,1) = 3.0 nsec
Base delay (2,2) = 4.0 nsec,

it would be expressed by the [Base Delay] line as follows:

[Base Delay] 1.0 2.0 3.0 4.0 nsec

 Data Lines

Data lines define the impulse response matrix. Data lines follow Header lines. Data lines
are of the form:

[Number of Points] P11
sample1 sample2 ... sampleP11

[Number of Points] P12
sample1 sample2 ... sampleP12

Advanced Design System 2011.01 - Using Circuit Simulators

121

...

[Number of Points] PNN
sample1 sample2 ... samplePNN

where

Pij = Number of sample points in the impulse response of parameter (i,j)

sample1 sample2 ... samplePij = Impulse response samples of parameter (i,j)

There are N2 data lines for an N-port network. Impulse responses are ordered row-wise.

 Data Lines Example

[Number of time points] 4

3.409677e-01 2.650540e-01 1.488737e-01 0.0

[Number of time points] 6

3.288703e-02 -8.949016e-03 -7.373915e-04 3.288703e-02 -8.949016e-03 0.0

[Number of time points] 6

3.288703e-02 -8.949016e-03 -7.373915e-04 3.288703e-02 -8.949016e-03 0.0

[Number of time points] 4

3.409677e-01 2.650540e-01 1.488737e-01 0.0

 Example .imp File

!2-port S-parameter file

[Version] 1.0

S R 5.000000e+01

[Number of Ports] 2

[Reference] 75.0 75.0

[Original Frequency Range] 0.000000e+00 1.000000e+10 Hz

[Time Step] 2.500000e-11 sec

[Base Delay] 0.000000e+00 1.731859e-09

1.731859e-09 0.000000e+00

[Number of time points] 4 !S11

3.409677e-01 2.650540e-01 1.488737e-01 0.0

[Number of time points] 6 !S12

3.288703e-02 -8.949016e-03 -7.373915e-04 3.288703e-02 -8.949016e-03 0.0

[Number of time points] 6 !S21

3.288703e-02 -8.949016e-03 -7.373915e-04 3.288703e-02 -8.949016e-03 0.0

[Number of time points] 4 !S22

3.409677e-01 2.650540e-01 1.488737e-01 0.0

 Discrete Format
 The discrete data file consists of an array of data arranged in rows and columns. The
values available for each parameter are arranged in columns. Following the BEGIN
DSCRDATA line is the % format line which specifies the names of dependent variables.
The first column is always treated as a string; other columns are real, integer or string,
depending on the first row of data.

The first column, under the heading Index in the example below, contains entries used to
identify each row in the file. These entries can be either an integer or an alphanumeric
identifier, and can be thought of as a list of specification numbers (or part numbers). For
example, the data file data/stdvalues15.dscr is arranged as follows:

REM stdvalues15.dscr

BEGIN DSCRDATA

% INDEX A12 A13

 1 1000 1000

 2 1000 1200

 3 1000 2200

 4 1200 1000

 5 1200 1200

 6 1200 2200

END DSCRDATA

 Selecting a Row

A row of data can be selected by specifying its row index (starting from 0). In this

Advanced Design System 2011.01 - Using Circuit Simulators

122

example, the file lists two columns of values labeled A12 and A13. By specifying 2 as the
row number, the values 1000 and 2200 are selected for A12 and A13, respectively.

 Using the File with a DAC

To use the data within the file, you must link the file to the component of interest. You
reference a discrete data file in this way by using a DAC:

Place a DataAccessComponent data item in your design. The DAC is located in the1.
Data Items palette. Double-click the DAC to edit it.
On the File tab, in the File Name field, specify the name of the discrete data file, and2.
accept the default setting for File Type , which is Discrete .
On the Interpolation tab, accept the defaults for Interpolation Method (Index Lookup3.
) and for Interpolation Domain (Rectangular).
On the Independent Variable tab, set the names and values for the independent4.
variables. This is necessary since data in a discrete data file can be accessed only by
using an index lookup value. This means looking up data by row number.
To set up an independent variable, enter the name in the Variable Name field. For a
discrete data file, the innermost independent variable is the dimension number which
should be used as the name. Next, enter the row number in the Value field, which
can be a variable assigned a value on the schematic. Then click Add to insert the
name and value in the table at the left. Repeat this process for each independent
variable in the data file.
Values entered for Variable Name are treated as strings, and quotation marks are
inserted with these values automatically when added to the table's Name column.
However, the innermost independent variable of a discrete data file must be specified
as a cardinal integer instead of a string name. Assuming you are working with a one-
dimensional data file, enter @1 to enter the integer (@ suppresses the quotation
marks). For example, here is a portion of a one-dimensional discrete data file:

Begin dscrdata

% index mydata

0 12

1 34

2 56

.....

end

If you define a variable called MyIndex in a schematic whose value represents the
index of the row of data to be accessed, the table of independent variables should be
constructed this way to read the one-dimensional file:

Name Value

1 MyIndex

The value assigned to MyIndex in the schematic determines which row of data is
read. So if MyIndex = 0 , the first row is read.
Place the component whose parameter values should come from the data file.5.
Double-click the component.
Under Pa rameter Entry Mode, select File Based.6.
Under Data Access Component Instance , enter the ID of the desired DAC data item.7.
Under Dependent Parameter Name , enter the name of a dependent variable in the8.
discrete data file (In the sample above, the dependent variable names are A12 and
A13.).

 Example

For an example of using a discrete data file, refer to amp1 in the Examples directory,
under Tutorials/DataAccess_wrk .

 Model MDIF Files
 Nonlinear devices obtain their model parameters either from a model item or a file. For

Advanced Design System 2011.01 - Using Circuit Simulators

123

those devices that use a file, such as the EE_BJT2_Model , this section discusses the
appropriate format for a model file, and how to read the file.

Model files are text files that contain model parameter names and values. A sample model
file for the EE_BJT2_Model is shown below. Comments can be placed in the file by starting
the line with REM . The model parameters are placed between BEGIN BDTA and END
BDTA . One or more parameter names are placed on a line beginning with the percent
symbol (%); corresponding values are placed in the same order on the next line.
Parameter names can be in any order and are not case sensitive. Any parameters that are
not present in the file take on their documented default values. Parameter names for each
device are listed in the documentation for that device.

REM any line that starts with REM is ignored

BEGIN BDTA

% Rb Rc Re Tamb Ibir Nbr

 0.637326 5.17646 0.695 25 3.72528e-15 1.0537

% Isc Nc Ibif Nbf Ise Ne

 0 2 5.70565e-17 1.10843 4.63077e-14 1.83578

% Var Nr Isr Ikr Vaf Nf

 1.1858 1.02201 1.12936e-14 100 54.9731 0.977768

% Isf Ikf Cjc Vjc Mjc Cje

 5.37696e-16 0.857731 5.87976e-13 0.313492 0.0650757 9.81026e-13

% Vje Mje Tf Tr Fc

 1.05535 0.475724 2.09636e-12 0 0.9

% Xtf Vtf Itf

 10 4.32912 1e-09

END BDTA

The following figure shows how to obtain parameter values from a model MDIF file using a
DataAccessComponent. The DAC refers to the model file by name. In this example, the file
name is bfqtm1.txt . Additionally, Type is set to MDIFmodel and ExtrapMode set to
InterpolationMode . On the device model component, the AllParams parameter is set to
the name of the DAC, which is DAC_BJT .

 Reading a Model MDIF file using a DataAccessComponent

Advanced Design System 2011.01 - Using Circuit Simulators

124

 PDF Format
 This format is for user-specified Probability Density Functions (PDF). PDF is used for
arbitrary distributions that are not correlated. The two methods available accommodate:

Situations where the spread of statistical data is proportional to the nominal value
(as in a percent tolerance).
Situations where the spread is independent of the nominal value (an absolute
tolerance).

Probability density functions are represented as vertices of piecewise linear segments.
These value/ordinate pairs are stored in a textual data file in a prescribed format. The
nominal value is also stored.

User-specified probability density files have an extension .pdf and use an MDIF file format.
Only a single distribution definition is allowed in each .pdf file.

 Guidelines for .pdf

In addition to the nominal value, there must be a minimum of three value/ordinate
data pairs.
For tolerance representation, all value data and the nominal value must have the
same algebraic sign.
The ordinate data associated with the most negative and most positive value data
must be zero.
All ordinate data must be non-negative.
At least one non-end ordinate data must be non-zero.

 Example PDF File

The following example shows how to create a user-defined PDF file. The technique
involves the use of a discrete file which contains the nominal value and the statistical data
(in piece-wise linear form.) In this example, the first block contains the allowable nominal
values, and the second block contains the statistical information. The VALUE/ORDINATE
pairs describe the user-defined PDF.

BEGIN DSCRDATA

% INDEX my_index

1 50

2 60

3 70

4 100

END DSCRDATA

REM

REM VAR INDEX value below must correlate with the row in the above data

REM block, as selected by the iVal1 parameter of the DAC.

REM For example, if iVal1=3, the 4th row of data from above is chosen

REM (INDEX=4), and VAR INDEX = 4 must be specified below

REM

REM By experiment, the NOMINAL value does not have to correlate with the

REM row number in the DSCRDATA block.

REM

VAR INDEX = 4

VAR PARNAME = my_index

BEGIN TOLERANCE

%NOMINAL

100

%VALUE ORDINATE

90 0.0

95 1.0

98 0.0

100 0.0

102 0.0

105 1.0

110 0.0

END TOLERANCE

Advanced Design System 2011.01 - Using Circuit Simulators

125

Note
The total area under your PDF does not have to equal one as in the strict definition of a PDF-the simulator
will automatically scale your PDF to meet this condition.

 Interpretation of PDF data

 Interpretation of user-supplied PDF data is piece-wise linear with respect to
value/ordinate pairs. The data preparation previously described enables the program to
supply a properly qualified variate.

To realize a statistical variable which obeys the user-supplied PDF, a uniform variate on
the interval 0 to 1 is used as an input to a function which is the inverse of the cumulative
distribution function (CDF). The CDF is formed by integrating the PDF from its most
negative value to its most positive value, with the following conditions:

Fx (-∞), the CDF at minus infinity = 0
Fx (∞), the CDF at infinity = 1

Applying this uniform [0,1] variate to the inverse of the CDF results in a statistical variable
having the user-specified probability density function.

PDFs may be used with:

Yield analysis, with or without post-production tuning
Yield optimization (design centering)

 S2PMDIF Format
 The S2PMDIF data format file (. s2p) can contain multiple two-port small-signal
measurement data and associated noise measurement data in a single file. S2P indicates
that the data used is typically S-parameters, though other small-signal parameters (Y, Z,
H, G) are supported. These files are a natural extension of two-port S-parameter
Touchstone files. For information about Touchstone files, see Touchstone SnP Format.
MDIF refers to the fact that these files use the format and syntax rules associated with the
Measurement Data Interchange Format (MDIF).

The most typical application of the S2PMDIF format is the creation of a file-based
statistical representation for one or more devices in the fabrication process. Due to
process variations, S-parameters for the same device will vary naturally. Using the
S2PMDIF format, which captures all S-parameter data, in conjunction with statistical and
yield analysis tools, which can randomly select a part, statistical characterization of a
device (known as a truthmodel) for yield analysis is achieved.

 General File Structure

 The file structure can repeat for as many small-signal data/noise data pairs as needed.
Noise data is optional and the file structure shown here may only have ACDATA blocks if
desired.

! Comment Line
VAR <_Your_variable_name#1_> = <Your_Value>_
VAR <_Your_variable_name#2_> = <Your_Value>_
VAR <_Your_variable_name#n_> = <Your_Value>_
BEGIN ACDATA
! Option line
% F n11x n11y n21x n21y n12x n12y ! signal format line
! < Your small data consistent with above format line >
END
BEGIN NDATA
! Option line
% F nfmin n11x n11y rn ! noise format line
! < Your noise data >
END
! Repeat entire ACDATA and NDATA blocks above if necessary

Advanced Design System 2011.01 - Using Circuit Simulators

126

! preceded by different VAR values to distinguish measurements.

 Guidelines

 The details presented in this section are demonstrated in Example S2PMDIF File. You are
encouraged to review the example, then refer back to these guidelines for the detailed
information.

VAR items VAR items are used to declare variables that distinguish different small
signal/noise parameter pairs. The format is,

VAR <name> = <value>

Examples:

VAR Part_XYZ_sample = 1

VAR SAMPLE = 0

Note
VAR is a reserved keyword for the MDIF file. SAMPLE is a reserved variable for statistical analysis
applications.

General information S2PMDIF supports

multiple small-signal and/or noise data pairs
or
one small-signal and/or noise data pair.

If the latter is used, no VAR declaration is required.

Comments Comments in the S2PMDIF are supported using ! or the REM statement. The !
may appear at the beginning of a line, or as a trailing comment at the end of a line. REM,
however, may only serve as a leading comment on the beginning of a line. Examples:

REM VAR Lot = 1

! VAR Lot = 1

VAR Lot = 1 ! This is the wafer lot number

S2PMDIF data blocks S2PMDIF contains two main data blocks framed by BEGIN and
END statements:

ACDATA Lists small-signal parameters vs. frequency.
Framed by BEGIN ACDATA ... END.
The ACDATA block is required in the S2PMDIF file.

NDATA Lists noise parameters vs. frequency.
Framed by BEGIN NDATA ... END.
The NDATA block is optional in the S2PMDIF file.

Supported small-signal parameters The ACDATA (small-signal parameter) block
supports the small-signal parameter types S, Y, Z, H, or G.

Supported noise data The NDATA (noise data) block supports parameters NFMIN
(minimum noise figure), Gamma Opt (optimal source reflection coefficient), and RN (noise
resistance). This is supported for use with all small-signal parameter types.

Option line The option line declares data contained in the SFC m2PMDIF file. These are

The frequency units
The type of small-signal parameter
The format used to express the small signal parameters (ACDATA block) or optimum
source reflection (NDATA) (Magnitude & Angle, Real & Imaginary, dB & Angle).

There are two option line formats:

#AC (freq_unit SS_ParmType SS_Parm_Format R Scaling/system impedance)
freq_unit SS_ParmType SS_Parm_Format R Scaling/system

where:

Advanced Design System 2011.01 - Using Circuit Simulators

127

freq_unit = Sets frequency units.
Options are Hz, KHz, MHz, or GHz.

SS_ParmType = Sets small-signal parameter type.
Options are: S, Y, Z, H, or G (default is S).

SS_Parm_format = Small signal parameter format.
Options are RI, MA, or DB (default is RI), where:
RI declares Real Imaginary Format
MA declares Magnitude Angle
DB is 20*Log(Parameter_Magnitude) Angle format

R Scaling/system = Declares scaling/system impedance
(default is 50 ohms)

Important Option Line Information

While both option line formats are supported, #AC(...) is recommended.
Option lines are required in the file. If any are omitted, unpredictable results will
occur.
Option lines may have different frequency units, small-signal parameter formats
(e.g., MA, RI, and DB), and system/scaling impedance values in the same S2PMDIF
file. However, the small-signal parameter type (e.g., S, Y, Z, H, G) must be the same
for all option lines in the S2PMDIF file. Agilent recommends that the same option line
be used throughout the same S2PMDIF file except where scaling differences require
changes (e.g., noise data is not scaled, whereas S-parameter data has a normalizing
system impedance).
If default SS_ParamType, SS_Param_format, and R Scaling/System are used, at a
minimum, the freq_unit must appear in the option line. For example:
#AC (GHz) - preferred format
GHz - alternative format (Touchstone based)
Option line syntax is case insensitive.
When entering parameters other than S-parameter data, typically R 1 is used, since
some users who are accustomed to using S-parameters make the common mistake
of entering R 50 Z-parameters. In that event, the Z-parameters would be scaled to
an undesirable level.
If an option line is not specified within a data block in the file, the following default
option line is used for that data: # hz R ri R 50 .

Signal Format Line The syntax for the signal format line is
% F n11x n11y n21x n21y n12x n12y n22x n22y

The signal format line comprises nine columns of data in the ACDATA block. The first
column is frequency, the remaining columns pertain to small-signal parameters. In
S2PMDIF, each two-port small-signal parameter is represented in two parts. The format
being either Magnitude(x) and Angle(y), or Real(x) and Imaginary(y), or dB(x) and
Angle(y). (See guideline for Option line above.) Given this, the small signal parameters
are entered as eight columns of data. The format line has the following meaning where n
is S, Y, Z, H, or G:

F = Frequency in Hz, kHz, MHz, or GHz.

n11x = Magnitude, real part, or dB value (depending which option is used) for small signal parameter n11.

n11y = Angle, or imaginary part (depending which option is used) for small signal parameter n11.

n21x = Magnitude, real part, or dB value (depending which option is used) for small signal parameter n21.

n21y = Angle, or imaginary part (depending which option is used) for small signal parameter n21.

n12x = Magnitude, real part, or dB value (depending which option is used) for small signal parameter n12.

n12y = Angle, or imaginary part (depending which option is used) for small signal parameter n12.

n22x = Magnitude, real part, or dB value (depending which option is used) for small signal parameter n22.

n22y = Angle, or imaginary part (depending which option is used) for small signal parameter n22.

When the small-signal parameter format is declared (Magnitude Angle, Real Imaginary, or
dB Angle), all small-signal parameters assume that format. For example, if Magnitude
Angle is declared, all small signal parameters assume magnitude and angle format. If Real
Imaginary is declared, all parameters assume real and imaginary format. If MA, RI, or DB
are not specified at all, the default format is RI.

Noise Format Line The syntax for the noise format line is

% F nfmin n11x n11y rn

The noise format line comprises five columns of data in the NDATA block.

Advanced Design System 2011.01 - Using Circuit Simulators

128

F = Frequency in Hz, kHz, MHz, or GHz.

nfmin = Minimum noise figure.

n11x
n11y

= The third and forth columns are optimum source reflection coefficient described as either Magnitude
(n11x) and Angle (n11y), Real (n11x) and Imaginary (n11y), or DB (n11x) and Angle (n11y). (See
guideline for Option line above.)

rn = Equivalent normalized noise resistance.

In the option line, when MA, RI, or DB is declared, it only pertains to the optimum source
reflection coefficient data. If MA, RI, or DB are not specified at all, the default format is RI.

 Example S2PMDIF File

 The following example is annotated using single small signal, noise parameter data pair.

! File using #AC (...) Optionline

! Created Mon Jan 26 15:02:05 2004

VAR Wafer_Lot = 0

BEGIN ACDATA

#AC(hz S ma R 50)

! Choice of units: Hz, KHz, MHz, or GHz

! Optional Selection: S,Z,Y,H,or G {default S}

! Optional Selection: MA, DB, RI {default RI}

! DB = 20*log(mag(value))

! Optional Selection: R XY; where XY=reference res {default R 50}

% F n11x n11y n21x n21y n12x n12y n22x n22y

!F Mag_S11 Ang_S11 Mag_S21 Ang_S21 Mag_S12 Ang_S12 Mag_S22 Ang_S22

1e9 0.2416 -89.666 0.9138 -22.252 0.9138 -22.252 0.2366 -107.202

2e9 0.4456 -108.425 0.8336 -43.447 0.8336 -43.447 0.4394 -143.149

3e9 0.6068 -121.516 0.7234 -62.672 0.7234 -62.672 0.6044 -171.881

4e9 0.7203 -131.748 0.6068 -79.382 0.6068 -79.382 0.7259 -164.03

5e9 0.7945 -139.741 0.5001 -93.494 0.5001 -93.494 0.8097 143.997

END

BEGIN NDATA

! Noise Data block optional

#AC(hz S ma R 50)

! Choice of units: Hz, KHz, MHz, or GHz

! Optional Selection: S,Z,Y,H,or G {default S}

! Optional Selection: MA, DB, RI {default RI}

! MA, DB, RI pertains to Gamma Opt data only

! DB = 20*log(mag(value))

! Optional Selection: R XY; where XY=reference res {default R 50}

% F NFMIN N11X N11Y RN

! Freq nfmin_in_dB GammaOpt_Mag GammaOpt_Ang Normalized R

1.0000000E9 0.1221 0.8026 29.711 0.1200

2.0000000E9 0.2440 0.6919 57.344 0.1200

3.0000000E9 0.3659 0.6515 80.598 0.1201

4.0000000E9 0.4878 0.6507 98.564 0.1201

5.0000000E9 0.6097 0.6671 111.954 0.1202

END

! File using # freq_unit ... Optionline

! Created Mon Jan 26 15:02:05 2004

VAR Wafer_Lot = 0

BEGIN ACDATA

hz S ma R 50

! Choice of units: Hz, KHz, MHz, or GHz

! Optional Selection: S,Z,Y,H,or G {default S}

! Optional Selection: MA, DB, RI {default RI}

! DB = 20*log(mag(value))

! Optional Selection: R XY; where XY=reference res {default R 50}

% F n11x n11y n21x n21y n12x n12y n22x n22y

!F Mag_S11 Ang_S11 Mag_S21 Ang_S21 Mag_S12 Ang_S12 Mag_S22 Ang_S22

1e9 0.2416 -89.666 0.9138 -22.252 0.9138 -22.252 0.2366 -107.202

2e9 0.4456 -108.425 0.8336 -43.447 0.8336 -43.447 0.4394 -143.149

3e9 0.6068 -121.516 0.7234 -62.672 0.7234 -62.672 0.6044 -171.881

4e9 0.7203 -131.748 0.6068 -79.382 0.6068 -79.382 0.7259 -164.03

5e9 0.7945 -139.741 0.5001 -93.494 0.5001 -93.494 0.8097 143.997

END

BEGIN NDATA

! Noise Data block optional

hz S ma R 50

! Choice of units: Hz, KHz, MHz, or GHz

! Optional Selection: S,Z,Y,H,or G {default S}

! Optional Selection: MA, DB, RI {default RI}

! MA, DB, RI pertains to Gamma Opt data only

! DB = 20*log(mag(value))

! Optional Selection: R XY; where XY=reference res {default R 50}

% F NFMIN N11X N11Y RN

! Freq nfmin_in_dB GammaOpt_Mag GammaOpt_Ang Normalized R

Advanced Design System 2011.01 - Using Circuit Simulators

129

1.0000000E9 0.1221 0.8026 29.711 0.1200

2.0000000E9 0.2440 0.6919 57.344 0.1200

3.0000000E9 0.3659 0.6515 80.598 0.1201

4.0000000E9 0.4878 0.6507 98.564 0.1201

5.0000000E9 0.6097 0.6671 111.954 0.1202

END

 Additional Examples: ACDATA and NDATA Blocks

! Created Mon Jan 26 15:02:18 2004

VAR Wafer_Lot = 0

BEGIN ACDATA

#AC(hz S ri R 50)

% F n11x n11y n21x n21y n12x n12y n22x n22y

1e+009 0.00140798345 -0.241631115 0.845829604

-0.346084206 0.845829604 -0.346084206 -0.0699873389

-0.226051765

2e+009 -0.140908488 -0.422961056 0.6052091

-0.573277416 0.6052091 -0.573277416 -0.351668311

-0.263572469

3e+009 -0.317221301 -0.51732628 0.332133361

-0.642749288 0.332133361 -0.642749288 -0.598403728

-0.0853663052

4e+009 -0.479677672 -0.537464874 0.111818135

-0.596499788 0.111818135 -0.596499788 -0.697916575

0.199718707

5e+009 -0.606360921 -0.513473 -0.0304812178

-0.499151696 -0.0304812178 -0.499151696 -0.655090631

0.475990476

END

BEGIN NDATA

#AC(hz S ri R 1)

% F NFMIN N11X N11Y RN

1.00000000000000000E9 1.22029516577356920E-1 6.97160538558048340E-1

3.97731417445914650E-1 6.00019739208800920

2.00000000000000000E9 2.44034955394409670E-1 3.73350985510129000E-1

5.82545299649481410E-1 6.00078956835208110

3.00000000000000000E9 3.65992281414391130E-1 1.06430454557825050E-1

6.42814879525177040E-1 6.00177652879219800

4.00000000000000000E9 4.87877544837279590E-1 -9.69155972949636890E-2

6.43519718192936190E-1 6.00315827340834660

5.00000000000000000E9 6.09666923194363260E-1 -2.49450600814350180E-1

6.18811927554552810E-1 6.00493480220054730

END

VAR Wafer_Lot = 1

BEGIN ACDATA

#AC(hz S ri R 50)

% F n11x n11y n21x n21y n12x n12y n22x n22y

 1e+009 0.0133409179 -0.230137244 0.840070938

-0.340315654 0.840070938 -0.340315654 -0.0617617486

-0.229382577

2e+009 -0.120955165 -0.40456472 0.604746033

-0.565976614 0.604746033 -0.565976614 -0.345621191

-0.270746041

3e+009 -0.289098146 -0.497222626 0.335340188

-0.637454262 0.335340188 -0.637454262 -0.596941273

-0.0943544823

4e+009 -0.445587328 -0.518605287 0.116142331

-0.593841291 0.116142331 -0.593841291 -0.70077353

0.192167183

5e+009 -0.568522019 -0.496734037 -0.026397422

-0.498328865 -0.026397422 -0.498328865 -0.660073231

0.471463342

END

BEGIN NDATA

#AC(hz S ri R 1)

% F NFMIN N11X N11Y RN

1.00000000000000000E9 1.71762793604862220E-1 6.97308317021682810E-1

3.02305313263392340E-1 6.9596391614503332

2.00000000000000000E9 3.43458465714362450E-1 4.15378270949377270E-1

4.48199090821574850E-1 6.9623162008013688

3.00000000000000000E9 5.15020130532548670E-1 1.85487069735727930E-1

5.06615547307641110E-1 6.9667779330530832

4.00000000000000000E9 6.86381371368581040E-1 5.35645741807940560E-3

5.20374575111159030E-1 6.9730243582054969

5.00000000000000000E9 8.57476469498637610E-1 -1.35072700985538610E-1

5.12375200485824140E-1 6.981055476258586

END

VAR Wafer_Lot = 2

Advanced Design System 2011.01 - Using Circuit Simulators

130

BEGIN ACDATA

#AC(hz S ri R 50)

% F n11x n11y n21x n21y n12x n12y n22x n22y

1e+009 0.0261985778 -0.23292849 0.822455256

-0.341254054 0.822455256 -0.341254054 -0.0505770288

-0.23686219

2e+009 -0.112333318 -0.406095322 0.583604607

-0.563040028 0.583604607 -0.563040028 -0.340993754

-0.278957576

3e+009 -0.282374986 -0.494226554 0.314667444

-0.627999778 0.314667444 -0.627999778 -0.594911193

-0.0996720908

4e+009 -0.437476982 -0.511079142 0.0996827436

-0.579649532 0.0996827436 -0.579649532 -0.698293478

0.188345791

5e+009 -0.557310676 -0.486460159 -0.0377810523

-0.482462248 -0.0377810523 -0.482462248 -0.657181646

0.467271981

END

BEGIN NDATA

#AC(hz S ri R 1)

% F NFMIN N11X N11Y RN

1.00000000000000000E9 2.20723603091905400E-1 6.88702175738749210E-1

3.10193703295093660E-1 8.7252393655197622

2.00000000000000000E9 4.41304833276760710E-1 4.00100485663632010E-1

4.56013841018826490E-1 8.7307131145790162

3.00000000000000000E9 6.61602142031938460E-1 1.66985293710630910E-1

5.11697368308757120E-1 8.7398360296778144

4.00000000000000000E9 8.81475616395049320E-1 -1.39839699776407360E-2

5.22456153286954630E-1 8.75260811081613

5.00000000000000000E9 1.10078776413520350E0 -1.53929731170780970E-1

5.11924800755568120E-1 8.7690293579939471

END

VAR Wafer_Lot = 3

BEGIN ACDATA

#AC(hz S ri R 50)

% F n11x n11y n21x n21y n12x n12y n22x n22y

1e+009 -0.111624701 -0.405714686 0.66636886

-0.469619205 0.66636886 -0.469619205 -0.191986725

-0.329432821

2e+009 -0.41908962 -0.512855503 0.292032657

-0.563375528 0.292032657 -0.563375528 -0.569338122

-0.206257358

3e+009 -0.620672222 -0.472453429 0.0607572371

-0.47694961 0.0607572371 -0.47694961 -0.718017693

0.101776232

4e+009 -0.732902391 -0.404898014 -0.0522793425

-0.36498764 -0.0522793425 -0.36498764 -0.69113052

0.390569198

5e+009 -0.795560017 -0.34381194 -0.101065286

-0.269885315 -0.101065286 -0.269885315 -0.576309143

0.608680065

END

BEGIN NDATA

#AC(hz S ri R 1)

% F NFMIN N11X N11Y RN

1.00000000000000000E9 5.18703037517405720E-1 2.56297603514494640E-1

5.77469208317883620E-1 9.5231179096495424

2.00000000000000000E9 1.03556771684315740E0 -2.06911574434137120E-1

5.86373914380050380E-1 9.5447677385981624

3.00000000000000000E9 1.54881350043704070E0 -4.46640278565243860E-1

5.11094686752464700E-1 9.5808507868458594

4.00000000000000000E9 2.05677054388418230E0 -5.81970283235218930E-1

4.38893368283120290E-1 9.6313670543926495

5.00000000000000000E9 2.55792347993451760E0 -6.65702281631675600E-1

3.80285542816346120E-1 9.6963165412384953

END

VAR Wafer_Lot = 4

BEGIN ACDATA

#AC(hz S ri R 50)

% F n11x n11y n21x n21y n12x n12y n22x n22y

1e+009 -0.0997555774 -0.381004445 0.705619581

-0.459619141 0.705619581 -0.459619141 -0.188617047

-0.322113995

2e+009 -0.387429707 -0.50652345 0.338299265

-0.580037701 0.338299265 -0.580037701 -0.568533379

-0.21853959

3e+009 -0.59300033 -0.48258943 0.0913926446

-0.508488094 0.0913926446 -0.508488094 -0.734058749

0.0900874159

4e+009 -0.71385299 -0.421239785 -0.0364444847

-0.397584211 -0.0364444847 -0.397584211 -0.713634507

0.390775305

Advanced Design System 2011.01 - Using Circuit Simulators

131

5e+009 -0.783429944 -0.361124669 -0.0944553209

-0.298630566 -0.0944553209 -0.298630566 -0.595965263

0.61920336

END

BEGIN NDATA

#AC(hz S ri R 1)

% F NFMIN N11X N11Y RN

1.00000000000000000E9 4.07278952069115260E-1 3.20981863953611680E-1

5.26706311842366580E-1 7.6643738931871832

2.00000000000000000E9 8.13665870677917270E-1 -1.24308690147576310E-1

5.64368849214357040E-1 7.6773474702487121

3.00000000000000000E9 1.21828615365247780E0 -3.71333282289684650E-1

5.08578990984615050E-1 7.6989700986845886

4.00000000000000000E9 1.62029912735584050E0 -5.17462235668050940E-1

4.46062394082844540E-1 7.7292417784948277

5.00000000000000000E9 2.01891277231332160E0 -6.10837572225724480E-1

3.92061347849876940E-1 7.7681625096794225

END

VAR Wafer_Lot = 5

BEGIN ACDATA

#AC(hz S ri R 50)

% F n11x n11y n21x n21y n12x n12y n22x n22y

1e+009 -0.148708863 -0.411149613 0.661371247

-0.487106054 0.661371247 -0.487106054 -0.245385025

-0.343281312

2e+009 -0.459669272 -0.498617399 0.27661003

-0.561103773 0.27661003 -0.561103773 -0.633354256

-0.183147263

3e+009 -0.65008453 -0.447693986 0.054820678

-0.464075002 0.054820678 -0.464075002 -0.761781857

0.147962113

4e+009 -0.751951738 -0.378576048 -0.0489188832

-0.35214127 -0.0489188832 -0.35214127 -0.712725662

0.441632279

5e+009 -0.807697362 -0.319231466 -0.0924561924

-0.260818351 -0.0924561924 -0.260818351 -0.581417298

0.655785284

END

BEGIN NDATA

#AC(hz S ri R 1)

% F NFMIN N11X N11Y RN

1.00000000000000000E9 4.82467789743262190E-1 2.28415357401098710E-1

5.09316970466515430E-1 7.1489835897047316

2.00000000000000000E9 9.63454968428843020E-1 -2.06744364689974120E-1

5.11947374976623950E-1 7.1696884038188884

3.00000000000000000E9 1.44152132366022330E0 -4.32828356211392770E-1

4.47558248165678220E-1 7.2041964273425005

4.00000000000000000E9 1.91530443304156290E0 -5.63042210953368820E-1

3.86155387977519470E-1 7.2525076602755627

5.00000000000000000E9 2.38355146947575140E0 -6.45263220258679840E-1

3.36048596462367750E-1 7.3146221026180545

END

 P2D Format
 The large-signal or power-dependent S-parameter (.p2d) file is a system input file you
create from an S-parameter file, inserting the MDIF format. You use the . p2d file to
characterize the component by a complete set of 2-port large-signal S-parameters,
accounting for power dependence of S21, S11, S22, and S12, plus optional noise data,
and optional intermodulation data.

A .p2d file can also be created via simulation by placing a P2D simulation component from
the LSSP Simulation Library in the design.

It possible to have multi-dimensional P2D files with VAR statements separating individual
basic P2D sections. Such files may be automatically generated using the
AmplifierP2D_Setup component from the System-Data Models library.

The format for a basic P2D section is shown here. Required keywords appear in
UPPERCASE ITALIC characters.

!!! Begin basic P2D syntax
BEGIN ACDATA !!! required 2-port S-parameter data block
..... (Required small signal section identical to ACDATA section of S2D
format)
..... (Optional large signal section - shown in the next section)

Advanced Design System 2011.01 - Using Circuit Simulators

132

END ACDATA
BEGIN NDATA !!! optional 2-port noise data block
....
END NDATA
BEGIN IMTDATA !!! optional intermodulation table
....
END IMTDATA
!!! End basic P2D syntax

This format can be expanded to form a multi-dimensional P2D file using VAR statements.
For instance a single P2D file containing two temperature points over three bias points
contains a total of six basic sections as shown. Note that each sequence of VAR
statements should preserve the order of the sweep, in this case temperature over bias
and each sweep variable, for example, bias has its values arranged in monotonically
increasing order. In this example B1 < B2 < B3 and T1 < T2 . Required keywords appear
in UPPERCASE ITALIC characters.

VAR temp=T1
VAR bias=B1
...... (1st Basic P2D section)
VAR temp=T1
VAR bias=B2
...... (2nd Basic P2D section)
VAR temp=T1
VAR bias=B3
...... (3rd Basic P2D section)
VAR temp=T2
VAR bias=B1
...... (4th Basic P2D section)
VAR temp=T2
VAR bias=B2
...... (5th Basic P2D section)
VAR temp=T2
VAR bias=B3
...... (6th Basic P2D section)

 Guidelines for .p2d

Basic MDIF syntax contains four reserved words. VAR begins an independent variable
definition line, in the form VAR <name> = <value>. BEGIN <blockname> signals the
beginning of a data block, and END signals the conclusion of a data block. A line
beginning with REM or the comment symbol (!) will be assumed as comments.
VAR statements are used to specify multidimensional data, that is, two or more
independent variables. The value of a VAR statement can be a number.
Multiple sets of data (ACDATA, NDATA, IMTDATA) can be used with VAR statements
used before or after any dataset.
The file dataset is made up of data blocks, each separated by BEGIN and END
statements. Three different types of data blocks are allowed:
ACDATA = Lists small and large-signal parameters vs. frequency and power (required)

NDATA = Lists noise parameters vs. frequency (optional)

IMTDATA = Used for a 2-port frequency converter to give the single-tone intermodulation table
(optional)

 The ACDATA Block

 The ACDATA block allows you to specify the small- and large-signal characteristics of the
2-port.

General format:
BEGIN ACDATA
AC (.......) ! this is the option line
% ! this is a format line __
..... small-signal data goes here
% F ! this is a format line
... first large-signal data frequency

Advanced Design System 2011.01 - Using Circuit Simulators

133

% P1 P2 ! this is a format line
... large-signal data at first frequency
% F ! next large-signal frequency
... second large-signal data frequency
% P1 P2
... large-signal data at second frequency
...
... additional sets of large- signal frequency and data
...
END
Option line:
AC(unit parm_type parm_format R xx FC m b)
where:
unit = Sets the frequency unit.

Options are HZ, KHZ, MHZ, or GHZ.

parm_type = Only S-parameters are allowed; use S only.

parm_format = MA, DB, RI, VDB sets the format for the four network parameters, where:
MA declares magnitude and angle (degrees)
DB is for 20 • log10(MA) and angle (degrees)
RI declares real and imaginary
VDB declares n11 and n22 as VSWR and angle (degrees) and n21 and n12 as DB and
angle (degrees)

R xx = Declares resistance, where xx = normalization resistance.

FC m b = Declares input to output frequency conversion where
Fout = m • Fin + b ; where:
m is for frequency multiplication
b is for frequency translation

Small-signal format line:
% F n11x n11y n21x n21y n12x n12y n22x n22y
This line gives the order for the data in the lines to follow. All of the keywords shown
must be given in the format line. The order of these keywords is arbitrary. The order
shown is preferred.
F = For frequency data

n11x, n11y = The 11 data pair for the 2 port data matrix

n21x, n21y = The 21 data pair

n12x, n12y = The 12 data pair

n22x, n22y = The 22 data pair

If the parameter type = S, and the parameter format = DB, then
n11x = |S11| in dB, and n11y = angle of S11 in degrees.
Large-signal format line:
% F
This line precedes the frequency for the following large-signal data.
% P1 P2 n11x n11y n21x n21y n12x n12y n22x n22y
This line precedes the large-signal data. The large-signal data may have up to 101
sets of power data per frequency.
All of the keywords shown must be given in the format line. While the order of
keywords is arbitrary, the order shown is preferred.
P1 = The power (dBm) incident at port 1 with port 2 terminated in R ohms, for the measurement of

S11 and S21

P2 = The power (dBm) incident at port 2 with port 1 terminated in R ohms, for the measurement of
S22 and S12

In the following data, a value of 1000 (1.e3) for the P2 data indicates that the S22
and S12 data are for small-signal measurement.

n11x, n11y = The 11 data pair for the 2 port data matrix

n21x, n21y = The 21 data pair

n12x, n12y = The 12 data pair

n22x, n22y = The 22 data pair

If the parameter type = S, and the parameter format = DB, then n11x = |S11| in
dB, and n11y = angle of S11 in degrees.

Advanced Design System 2011.01 - Using Circuit Simulators

134

 ACDATA Block Examples

 2-port with 50-ohm S-parameters:

BEGIN ACDATA

AC(GHZ S DB R 50 FC 1.0 0.0)

% F n11x n11y n21x n21y n12x n12y n22x n22y

! RF-freq S11-db S11-deg S21-dB S21-deg S12-dB S12-deg S22-db S22-deg

1.0000 -15 45 8 25 -20 -15 -12 10

2.0000 -16 25 9 30 -20 -15 -12 20

3.0000 -17 -10 10 35 -20 -15 -11 30

% F

1.00

% P1 P2 n11x n11y n21x n21y n12x n12y n22x n22y

-15.000 -5.000 ...

-5.000 5.000 ... large-signal S-parameter data here ...

5.020 15.000 ...

% F

2.00

% P1 P2 n11x n11y n21x n21y n12x n12y n22x n22y

-15.000 -5.000 ...

-5.000 5.000 ... large-signal S-parameter data here ...

5.020 15.000 ...

END

2-port frequency converter with variable RF freq, variable LO freq, fixed IF freq, fixed LO
power, and RF-to-IF 2-port 50-ohm S-parameters:

BEGIN ACDATA

AC(GHZ VDB R 50 FC 0 0.2) ! this gives a constant IF of 0.2 GHz

% F n11x n11y n21x n21y n12x n12y n22x n22y

! RF-freq S11-vswr S11-deg S21-dB S21-deg S12-dB S12-deg S22-vswr S22-deg

1.0000 1.2 0 -8 0 -20 0 1.3 0

2.0000 1.3 0 -9 0 -20 0 1.2 0

3.0000 1.4 0 -10 0 -20 0 1.3 0

% F

1.00

% P1 P2 n11x n11y n21x n21y n12x n12y n22x n22y

-15.000 -5.00 ...

-5.000 5.00 ... large-signal S-parameter data here ...

5.020 15.00 ...

% F

2.00

% P1 P2 n11x n11y n21x n21y n12x n12y n22x n22y

-15.000 -5.00 ...

-5.000 5.00 ... large-signal S-parameter data here ...

5.020 15.00 ...

END

2-port frequency converter with variable RF freq, fixed LO freq, variable IF freq, fixed LO
power, and RF-to-IF 2 port 50-ohm S-parameters:

BEGIN ACDATA

AC(GHZ DB R 50 FC -1 4) ! this gives an IF = 4 - RF

% F n11x n11y n21x n21y n12x n12y n22x n22y

! RF-freq S11-dB S11-deg S21-dB S21-dB S12-dB S12-deg S22-dB S22-deg

1.0000 -12 0 -8 0 -20 0 -13 0

2.0000 -13 0 -9 0 -20 0 -12 0

3.0000 -14 0 -10 0 -20 0 -13 0

% F

1000.00

% P1 P2 n11x n11y n21x n21y n12x n12y n22x n22y

-15.000 -5.00 ...

-5.000 5.00 ... large-signal S-parameter data here ...

5.020 15.00 ...

% F

2000.00

% P1 P2 n11x n11y n21x n21y n12x n12y n22x n22y

-15.000 -5.00 ...

-5.000 5.00 ... large-signal S-parameter data here ...

5.020 15.00 ...

END

 The NDATA Block

Advanced Design System 2011.01 - Using Circuit Simulators

135

 The NDATA block allows the user to specify the small-signal noise characteristics of the 2-
port.

General format:
BEGIN NDATA
AC (.......) ! this is the option line
% ! this is the format line
..... data goes here
END
Option line:
AC(freq_unit parm_type parm_format R xx)
where:
freq_unit = Sets the frequency unit.

Options are HZ, KHZ, MHZ, or GHZ.

parm_type = S sets the source noise match type to optimum source reflection coefficient.

parm_format = MA, DB, RI sets the format for the optimum source match, where:
MA declares magnitude and angle (degrees)
DB declares 20 • log10(MA) and angle (degrees)
RI declares real and imaginary

R xx = Declares resistance, where xx = normalization resistance for the source match and rn.

Format line:
% F nfmin n11x n11y rn
This line gives the order for the data in the lines to follow. All of the keywords shown
must be given in the format line. While the order of keywords is arbitrary, the order
shown is preferred
F = For frequency data

nfmin = For minimum noise figure data

n11x,
n11y

= For the optimum source impedance for minimum noise figure

rn = For the equivalent input normalized noise resistance. The system simulator requires this
parameter to meet physical requirements. If the user-supplied rn value is less than allowed
for this requirement, then the system simulator will force this rn value to the lowest physical
limit.

 The IMTDATA Block

 The IMTDATA data block allows you to specify for a 2-port frequency converter the single
tone output intermodulation levels with respect to the fundamental output tone.

General format:
BEGIN
reference_signal_power reference_LO_power
....... IMT data goes here
END
This data is given for specific LO and RF input power levels. However, during a
system simulator spurious signal analysis, the data is adjusted for the actual
converter input signal and LO power levels.
Example

BEGIN IMTDATA

! Intermodulation table for double balanced mixer #1

! Reference Signal Level (dBm) Reference LO Level (dBm)

-10 7

! M x LO (Horizontal) N x Signal (Vertical)

% 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

!

99 26 35 39 50 41 53 49 51 45 65 55 75 65 85 99

24 0 35 13 40 24 45 28 49 35 55 45 65 55 99

73 73 74 70 71 64 69 64 69 65 75 75 85 99

67 64 69 50 77 47 74 44 74 45 75 55 99

86 90 86 88 88 85 86 85 90 85 85 99

90 80 90 71 90 68 90 65 88 65 99

90 90 90 90 90 90 90 90 90 99

90 90 90 90 90 87 90 90 99

99 95 99 95 99 95 99 99

90 95 90 95 90 99 99

99 99 99 99 99 99

90 99 99 99 99

99 99 99 99

Advanced Design System 2011.01 - Using Circuit Simulators

136

99 99 99

99 99

99

END

In the IMT table:

The vertical row number, N, (0, 1, to 15) indicates the harmonic of the signal
used in deriving the spurious output signal.
The horizontal column number, M, (0, 1, to 15) indicates the harmonic of the
local oscillator used in deriving the spurious output signal.
In row 2, column 4, the data is 13. This means that for an input signal at -10
dBm input, with an LO drive of +7dBm, an output spurious signal will occur at
3*LO + 1*signal, with a level that is 13 dB below the fundamental output signal.
If the input signal differs from the -10 dBm reference power level listed at the
top of the table by X dB, then the number in the table is adjusted by adding (N-
1)•X dB to it. This manner of adjustment is good for input power levels up to 5
dB greater than the reference signal power.
If the local oscillator signal differs from the +7 dBm reference power level listed
at the top of the table by X dB, then the number in the table is adjusted by
adding it by M•X dB to it. This manner of adjustment is good for local oscillator
power levels from the reference level minus 10 dB to the reference level plus 3
dB.
The data values must fall in the range of 0 to 99. Numbers outside this range
will cause an error.
The "#IMT ()" is optional. Signal and LO reference power levels can be listed
without this.
IMT data can be in square or triangular format.

 Example .p2d File

! --

! ampp2d.p2d

! --

! This is a sample P2D data file containing an ACDATA block,

! an NDATA block, and an IMTDATA block.

! --

!

BEGIN ACDATA

! This line and all lines starting with the comment (!) character

! are ignored. Do not have a blank line or comments as the first

! line in this file. In a P2D file ACDATA is a required block of

! data. It may have one or two sections.

! (a) Required -

! Full 2-port small signal S-parameters vs frequency

! (b) Optional -

! Full 2-port large signal S-parameters vs (frequency X power)

! The small signal data must precede the large signal data in this block.

AC(GHZ S RI R 50.0 FC 1. 0.)

! Optional Selection: HZ, KHZ, MKZ, or GHZ; Default is GHZ

! Optional Selection: S, Z, Y, H, or G; Default is S

! Optional Selection: MA, DB, or RI; Default is RI

! Optional Selection: R xx;

! where xx=reference resistance;

! Default R 50.0

! Optional Selection: FC x1 x2 is for frequency conversion:

! Fout=x1*Fin + x2

! Default is Fout = Fin

% F n11x n11y n21x n21y n12x n12y n22x n22y

! The above line is the format line showing the order

! in the following data lines

! The columns of data can be in any order

1.0000 0.3926 -0.1211 -0.0003 -0.0021 -0.0003 -0.0021 0.3926 -0.1211

2.0000 0.3517 -0.3054 -0.0096 -0.0298 -0.0096 -0.0298 0.3517 -0.3054

3.0000 0.0430 -0.5916 -2.6933 -0.1433 -0.5933 -0.1433 0.0430 -0.5916

4.0000 0.4071 -0.2756 2.4617 0.6234 0.3617 0.4234 0.4071 -0.2756

5.0000 0.2041 0.2880 2.6848 -0.5367 0.3848 -0.4367 0.2041 0.2880

6.0000 0.5666 0.0343 2.0383 -0.7437 0.0383 -0.7437 0.5666 0.0343

7.0000 0.0430 0.6916 -2.6933 0.1433 -0.6933 0.1433 0.0430 0.6916

8.0000 0.3059 0.5659 -0.1000 0.1424 -0.1000 0.1424 0.3059 0.5659

9.0000 0.3071 0.4145 -0.0307 0.0673 -0.0307 0.0673 0.3071 0.4145

10.0000 0.3419 0.3336 -0.0134 0.0379 -0.0134 0.0379 0.3419 0.3336

! This is the end of the small signal ACDATA section

!

Advanced Design System 2011.01 - Using Circuit Simulators

137

! This is the beginning of the large signal ACDATA section

% F

1.00

% P1 P2 n11x n11y n21x n21y n12x n12y n22x n22y

-15.00 -25.00 0.3926 -0.1211 -0.0003 -0.0021 -0.0003 -0.0021 0.3926 -0.1211

-10.00 -20.00 0.3826 -0.1221 -0.0004 -0.0022 -0.0003 -0.0021 0.3926 -0.1211

-5.00 -15.00 0.3726 -0.1231 -0.0007 -0.0029 -0.0003 -0.0021 0.3926 -0.1211

0.00 -10.00 0.3856 -0.1245 -0.0010 -0.0129 -0.0003 -0.0021 0.3926 -0.1211

% F

2.00

% P1 P2 n11x n11y n21x n21y n12x n12y n22x n22y

-15.00 -25.00 0.3517 -0.3054 -0.0096 -0.0298 -0.0096 -0.0298 0.3517 -0.3054

-10.00 -20.00 0.3517 -0.3154 -0.0098 -0.0298 -0.0096 -0.0298 0.3517 -0.3054

-5.00 -15.00 0.3517 -0.3254 -0.0104 -0.0298 -0.0096 -0.0298 0.3517 -0.3054

0.00 -10.00 0.3517 -0.3354 -0.0106 -0.0298 -0.0096 -0.0298 0.3517 -0.3054

! ... (more frequencies and power sweeps under each frequency may be added)

! This is the end of the small signal ACDATA section

END

BEGIN NDATA

! This is an optional block of data

AC(GHZ RI S R 50.0)

! Optional Selection: HZ, KHZ, MKZ, or GHZ; Default is GHZ

! Optional Selection: S, Z, Y, H, or G; Default is S

! Optional Selection: MA, DB, or RI; Default is RI

! Optional Selection: R xx; where xx = reference resistance;

! Default R 50.0

% F nfmin n11x n11y rn

! The above line is the format line showing the order

! in the following data lines

! The columns of data can be in any order

1.0000 2.0000 0.3926 -0.1211 .4

2.0000 2.5000 0.3517 -0.3054 .45

3.0000 3.0000 0.0430 -0.5916 .5

4.0000 3.5000 0.4071 -0.2756 .55

5.0000 4.0000 0.2041 0.2880 .6

6.0000 4.5000 0.5666 0.0343 .65

7.0000 5.0000 0.0430 0.6916 .7

8.0000 5.5000 0.3059 0.5659 .75

9.0000 6.0000 0.3071 0.4145 .8

10.0000 6.5000 0.3419 0.3336 .85

END

BEGIN IMTDATA

! This is an optional block and may be used

! some mixer component if the file

! format is supported.

! Intermodulation table for double balanced mixer #1

! Signal Level (dBm) LO Level (dBm)

-10 7

! M x LO (Horizontal) N x Signal (Vertical)

! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

!

 99 26 35 39 50 41 53 49 51 42 62 51 60 47 77 50

 24 0 35 13 40 24 45 28 49 33 53 42 60 47 63

 73 73 74 70 71 64 69 64 69 62 74 62 72 60

 67 64 69 50 77 47 74 44 74 47 75 44 70

 86 90 86 88 88 85 86 85 90 85 85 85

 90 80 90 71 90 68 90 65 88 65 85

 90 90 90 90 90 90 90 90 90 90

 90 90 90 90 90 87 90 90 90

 99 95 99 95 99 95 99 95

 90 95 90 90 90 99 90

 99 99 99 99 99 99

 90 99 90 95 90

 99 99 99 99

 90 99 90

 99 99

 99

END

!

! --

 S2D Format
 The S-parameter Data (.s2d) file is a system input file you create from an S-parameter
file, inserting the MDIF format. In the .s2d file, you describe small-signal data, optional
noise data, optional nonlinear data, and optional intermodulation data. You can describe
nonlinearity as a function of drive power or nonlinear parameter consisting of some
combination of third-order intercept point, 1dB gain compression, saturated output power,
and gain compression at saturation. In ADS, it possible to have multidimensional S2D files

Advanced Design System 2011.01 - Using Circuit Simulators

138

with VAR statements separating individual basic S2D sections. Such files may be
automatically generated using the AmplifierS2D_Setup component from the System-Data
Models library.

The format for a basic S2D section is shown here. Required keywords appear in
UPPERCASE ITALIC characters.

!!! Begin basic S2D syntax
BEGIN ACDATA !!! optional small-signal data block
....
END ACDATA
BEGIN GCOMPx !!! required compression information x=(1,...,7)
!!! only one type of GCOMPx supported in one S2D file
....
END GCOMPx
BEGIN NDATA !!! optional 2-port noise data block
....
END NDATA
BEGIN IMTDATA !!! optional intermodulation table
....
END IMTDATA
!!! End basic S2D syntax

This format can be expanded to form a multi-dimensional S2D file using VAR statements
in ADS. For instance a single S2D file containing two temperature points over three bias
points contains a total of six basic sections as shown. Note that each sequence of VAR
statements should preserve the order of the sweep, in this case, temperature over bias
and each sweep variable. For example, bias has its values arranged in monotonically
increasing order. In this example B1 < B2 < B3 and T1 < T2. Required keywords appear
in UPPERCASE ITALIC characters:

VAR temp=T1
VAR bias=B1
...... (1st basic S2D section)
VAR temp=T1
VAR bias=B2
...... (2nd basic S2D section)
VAR temp=T1
VAR bias=B3
...... (3rd basic S2D section)
VAR temp=T2
VAR bias=B1
...... (4th basic S2D section)
VAR temp=T2
VAR bias=B2
...... (5th basic S2D section)
VAR temp=T2
VAR bias=B3
...... (6th basic S2D section)

 Guidelines for .s2d

Basic MDIF syntax contains four reserved words:
VAR begins an independent variable definition line, in the form VAR <name> =
<value>.
BEGIN <blockname> signals the beginning of a data block.
END signals the conclusion of a data block.
REM or the comment symbol (!) at the beginning of a line signifies a comment.

VAR statements are used to specify multidimensional data, that is, two or more
independent variables. The value of a VAR statement can be a number.
Comments can be inserted on any line within the file and must be preceded by a
comment symbol (!).
Multiple sets of data (ACDATA, NDATA, GCOMP, IMTDATA) can be used with VAR
statements before or after any dataset. Note that only one type of GCOMP block can
be used in a single S2D file, for instance do not create an S2D file containing one
GCOMP3 and one GCOMP5 block.
Each block of ACDATA, NDATA, GCOMPx can be headed by an option line such as
#ACDATA (MHz S RI R 50) to allow scaling and type definition for the network and

Advanced Design System 2011.01 - Using Circuit Simulators

139

its parameters.
The file dataset is made up of data blocks, each separated by BEGIN and END
statements. The following ten different types of data blocks are allowed:
ACDATA Lists small-signal network parameters vs. frequency (required)

NDATA Lists noise parameters vs. frequency (optional)

GCOMP1 Lists output 3rd order intercept (IP3) (optional)

GCOMP2 Lists output 1dB gain compression power (IDBC) (optional)

GCOMP3 Lists output IP3 and 1DBC (optional)

GCOMP4 Lists output IP3 and output saturation power (PS) and gain compression at saturation (GCS)
(optional)

GCOMP5 Lists output 1DBC, PS, and GCS (optional)

GCOMP6 Lists output IP3, 1DBC, PS, and GCS (optional)

GCOMP7 Lists S21 as a function of input power at a single frequency (optional)

IMTDATA Used for a 2-port frequency converter to give the single-tone intermodulation table (optional)

One or more spaces or tabs separate entries on a line. Names can be mixed case-the
file reader will store them as lowercase.
Multi-dimensional IMT tables are not supported. Only one IMT table may be present
in a single S2D if necessary.

 The ACDATA Block

 The ACDATA block allows you to specify the small-signal characteristics of the 2-port.

General format:
BEGIN ACDATA
AC (.......) ! this is the option line
% ! this is the format line
..... data goes here
END
Option line syntax:
AC(freq-unit parm-type parm-format R xx FC m b)
where:
freq-unit = Sets the frequency units.

Options are: HZ, KHZ, MHZ, GHZ.

parm-type = Sets the 2-port network parameter option
using S, Z, Y, H, or G.

parm-
format

= Sets the format for the four network parameters using
MA, DB, RI, VDB, where:
MA declares magnitude and angle (degrees)
DB is 20• log10(MA) and angle (degrees)
RI declares real and imaginary
VDB declares n11 and n22 as VSWR and angle (degrees) and n12 and n21 as DB and
angle (degrees)

R xx = Declares resistance, where xx = normalization resistance

FC m b = Declares input to output frequency conversion such that
Fout = m•Fin + b where:
m is for frequency multiplication
b is for frequency translation

Example:
#AC (MHZ S MA R 50 FC 0 30)

would set the frequency units to MHZ, 2-port parameters to S, 2-port parameter
format to magnitude and angle, reference resistance to 50 ohms, frequency
conversion to 30 MHZ of constant output frequency.
FC 1 0 Sets the output frequency equal to the input frequency

(Fout = 1 • Fin + 0)

FC -1 30 Sets the output frequency to 30 minus the input frequency
(Fout = -1 • Fin + 30)

Format line:
% F n11x n11y n21x n21y n12x n12y n22x n22y
This line gives the order for the data in the lines to follow. All of the keywords shown
must be given in the format line. While the order of keywords is arbitrary, the order
shown is preferred.

Advanced Design System 2011.01 - Using Circuit Simulators

140

F = Frequency data column

n11x, n11y = The 11 data pair for the 2 port data matrix

n21x, n21y = The 21 data pair

n12x, n12y = The 12 data pair

n22x, n22y = The 22 data pair

where these data pairs belong to the 2-port characterization matrix:

Examples
The following examples illustrate the ACDATA block with various data options:
2-port with 50-ohm S-parameters:

BEGIN ACDATA

AC (GHZ S DB R 50 FC 1 0)

% F n11x n11y n21x n21y n12x n12y n22x n22y

! RF-freq S11-db S11-deg S21-dB S21-deg S12-dB S12-deg S22-db S22-deg

1.0000 -15 45 -8 25 -20 -15 -12 10

2.0000 -16 25 -9 30 -20 -15 -12 20

3.0000 -17 -10 -10 35 -20 -15 -11 30

END

2-port frequency converter with variable RF freq, fixed LO freq, variable IF freq, fixed
LO power, and RF-to-IF 2-port 50-ohm S-parameters:

BEGIN ACDATA

AC(GHZ S DB R 50 FC -1 4) ! this gives an

! IF = 4 - RF

% F n11x n11y n21x n21y n12x n12y n22x n22y

! RF-freq S11-dB S11-deg S21-dB S21-dB S12-dB S12-deg S22-dB S22-deg

1.0000 -12 0 -8 0 -20 0 -13 0

2.0000 -13 0 -9 0 -20 0 -12 0

3.0000 -14 0 -10 0 -20 0 -13 0

END

 The NDATA Block

The NDATA block allows you to specify the small-signal noise characteristics of the 2-port.

General format:
BEGIN NDATA
AC (.......) ! this is the option line
% ! this is the format line
..... data goes here
END
Option line syntax:
AC(freq-unit parm-type parm-format R xx)
where:
freq-unit = HZ, KHZ, MHZ, or GHZ sets the frequency units.

parm-type = S only, source reflection coefficient.

parm-
format

= MA, DB, RI sets the format for optimum source match, where:
MA declares magnitude and angle (degrees)
DB declares 20 • log10(MA) and angle (degrees)
RI declares real and imaginary

R xx = Declares resistance where xx = normalization resistance for the source match and noise
resistance.

Format line syntax:
% F nfmin n11x n11y rn
This line gives the order for the data in the lines to follow. All of the keywords shown
must be given in the format line. While the order of keywords is arbitrary, the order
shown is preferred.

Advanced Design System 2011.01 - Using Circuit Simulators

141

F = Frequency data column.

nfmin = For minimum noise figure data.

n11x,
n11y

= For the optimum source reflection coefficient for minimum noise figure.

rn = For the equivalent normalized input noise resistance of the 2-port. The system simulator
requires this parameter to meet physical requirements. If the user-supplied rn value is less
than allowed for this requirement, then the system simulator will force this rn value to the
lowest physical limit.

For more information on noise figure, see S-Parameter Simulation Noise Analysis
(cktsimsp).
The following is an example of the NDATA block:

BEGIN NDATA

ACDATA (GHz S RI R 50)

% F nfmin n11x n11y rn

1.0000 2.0000 -0.1211 -0.0003 .4

2.0000 2.5000 -0.3054 -0.0096 .45

3.0000 3.0000 -0.6916 -0.6933 .5

END

 Understanding GCOMP Data

There are seven mutually exclusive formats for expressing large signal response in an S2D
file, each corresponding to one type of GCOMP block. GCOMP stands for gain compression,
indicating that only forward transmission behavior of the device under large signal
conditions is captured here. Each GCOMP section may optionally contain multiple profiles,
each at a different gain compression frequency. Various nonlinear device models refer to
these frequencies as GCFreq or GainCompFreq.

GCOMP1 through GCOMP6 use parametric specifications whereas GCOMP7 uses a data-
based profile. As such, the first six types of GCOMP blocks are restricted in the modeling
capability of nonlinear behavior whereas GCOMP7 can represent any arbitrary response
including gain expansion regions.

GCOMP1 through GCOMP6 use various combinations of the following four standard
measures of nonlinear behavior, all referenced to the abscissa of an output (dBm) versus
input power (dBm) plot in:

IP3 - Third order intercept point in dBm, usually referenced to output power axis.
This is a theoretical point where the power of the fundamental at the output of the
nonlinear device would have equalled that of the third harmonic if there were no
expansion or compression effects at high input drives.
1DBC - 1 dB compression point in dBm, usually referenced to output power axis. This
parameter marks the onset of nonlinear behavior and refers to the point where actual
output power at the fundamental tone is 1 dB below the predicted linear output
power.
PS - Power at saturation in dBm refers to the maximum possible output power at
fundamental frequency under normal operating conditions, that is, prior to
breakdown due to high input drive.
GCS - Gain compression at saturation in dB, refers to the amount of compression
with respect to linear behavior at the onset of saturation of the output fundamental
frequency.

System level components that can interpret S2D profiles use an odd-order polynomial
fitting to emulate narrow-band nonlinear behavior based on GCOMP information. The
amount of compression information available for polynomial fitting depends on the GCOMP
convention as follows:

GCOMP1 and GCOMP2 each enable the modeling of 3rd order nonlinear behavior.
GCOMP3 is modelled using a 5th order polynomial.
GCOMP5 and GCOMP5 require a 7th order polynomial.
GCOMP6 includes all four parameters and requires 9th order polynomial fitting.
GCOMP7 fits to 3rd through 7th (odd) orders if 3-7 data points are specified. If more
than seven data points are specified, it performs a 9th order polynomial fitting of the
nonlinearity.

The following seven sections show the format for each GCOMP type. Note that each type
of block can have an multiple sections each delineated by an optional compression

Advanced Design System 2011.01 - Using Circuit Simulators

142

frequency line as shown in the following generic example. Required keywords appear in
UPPERCASE ITALIC characters:

BEGIN GCOMPx
% F
comp_freq_A
% (option line for block-type x)
.... (data for block-type x at fundamental output frequency A)
% F
comp_freq_B
% (option line for block-type x)
.... (data for block-type x at fundamental output frequency B)
......
% F
comp_freq_F
% (option line for block-type x)
.... (data for block-type x at fundamental output frequency F)
END GCOMPx

 The GCOMP1 Block

 The GCOMP1 data block for the .s2d data file allows you to specify the 2-port 3rd order
output intercept (IP3). No option line is used.

General format:
BEGIN GCOMP1
% IP3 ! this is the format line, required
..... data goes here
END
Format line (required):
% IP3
Example:

BEGIN GCOMP1

% IP3

25 ! this sets the output IP3 to 25 dBm

END

 The GCOMP2 Block

 The GCOMP2 data block for the .s2d data file allows you to specify the 2-port output
power at 1 dB gain compression. No option line is used.

General format:
BEGIN GCOMP2
% 1DBC ! this is the format line, required .
..... data goes here
END
Format line (required):
% 1DBC
Example:

BEGIN GCOMP2

% 1DBC

15 ! this sets the output power for 1 dB gain

! compression at 15 dBm

END

 The GCOMP3 Block

 The GCOMP3 data block for the .s2d data file allows you to specify the 2-port output IP3
and 1DBC simultaneously. No option line is used.

General format:

Advanced Design System 2011.01 - Using Circuit Simulators

143

BEGIN GCOMP3
% 1DBC IP3 ! this is the format line
..... data goes here
END
Format line:
% 1DBC IP3
This line gives the order for the data in lines to follow. All keywords shown must be
given in the format line; keyword order is arbitrary.
Example:

BEGIN GCOMP3 ! includes IP3 and 1DBC

% IP3 1DBC

25 15

END

 The GCOMP4 Block

 The GCOMP4 data block for the .s2d data file allows you to specify the 2-port output IP3,
output power at saturation (PS), and the gain compression at saturation (GCS). No option
line is used.

General format:
BEGIN GCOMP4
% IP3 PS GCS ! this is the format line
..... data goes here
END
Format line syntax:
% IP3 PS GCS
This line gives the order for the data in the lines to follow. All keywords shown must
be given in the format line; keyword order is arbitrary.
Example:

BEGIN GCOMP4 ! output 3rd order intercept occurs at 25 dBm

% IP3 PS GCS ! output saturation occurs at 20 dBm

25 20 5 ! with 5 dB of gain compression

END

 The GCOMP5 Block

 The GCOMP5 data block for the .s2d data file allows you to specify the 2-port output
1DBC, output power at saturation (PS), and the gain compression at saturation (GCS). No
option line is used.

General format:
BEGIN GCOMP5
% 1DBC PS GCS ! this is the format line
..... data goes here
END
Format line syntax:
% 1DBC PS GCS
This line gives the order for the data in the lines to follow. All of the keywords shown
must be given in the format line; keyword order is arbitrary.
Example:

BEGIN GCOMP5 ! output 1 dB gain compression occurs at 15 dBm

% 1DBC PS GCS ! output saturation occurs at 20

15 20 5 ! dBm with 5 dB of gain compression

END

 The GCOMP6 Block

The GCOMP6 data block for the .s2d data file allows you to specify the 2-port output IP3,
1DBC, output power at saturation (PS), and the gain compression at saturation (GCS). No

Advanced Design System 2011.01 - Using Circuit Simulators

144

option line is used.

General format:
BEGIN GCOMP6
% IP3 1DBC PS GCS ! this is the format line
..... data goes here
END
Format line:
% IP3 1DBC PS GCS
This line gives the order for the data in the lines to follow. All of the keywords shown
must be given in the format line; keyword order is arbitrary.
Example:

BEGIN GCOMP6 ! output 3rd order intercept

! occurs at 25 dBm

% IP3 1DBC PS GCS ! output 1 dB gain compression

! occurs at 15 dBm

25 15 20 5 ! output saturation occurs

! at 20 dBm with 5 dB of gain compression.

END

 The GCOMP7 Block

 The GCOMP7 data block for the . s2d data file enables you to specify the input-to-output
gain compression characteristic by listing the differential dB gain and differential phase as
a function of input power in tabular form.

The S2D file format allows gain compression data at multiple frequencies to be specified in
the GCOMP7 block. Note, however, that the AmplifierS2D component – with which many
S2D files are later associated – cannot interpolate between gain compression data at
different frequencies but uses a fixed frequency specified by the parameter GCfreq . If the
compression behavior is to hold true at multiple frequencies, separate GCOMP7 blocks
must be defined for each indexing frequency within the same .s2d data file.

It is important to note that the values of S21x and S21y contained in the GCOMP7 section
are not the absolute S-parameter responses of the system at the relevant input power.
They are differences with respect to the small signal values recorded in the ACDATA
section at the same frequency. For instance, if the small signal S21 response at frequency
F is polar(ss21mag, ss21deg), and the actual large signal S21 at power PinX at the same
frequency F is polar(ls21mag, ls21deg), then the GCOMP7 entry for PinX will register the
value of polar(ds21mag, ds21deg) where:

ds21mag = 10**(20*log10(ls21mag/ss21mag)/20) = ls21mag/ss21mag

ds21deg = ls21deg - ss21deg

Please note that regardless of the final format in which the small signal S-parameters
[ssijmag, ssijdeg] or the [ds21mag, ds21deg] pairs are expressed in the data file, the dB
domain differential definition of the GCOMP7 sections S21 values always holds as
mentioned above. Caution must be employed when manually generating or interpreting
the contents of the GCOMP7 section and all variables converted to dB domain before
numerically adding / subtracting to compute the actual S21values at PinX power.

General format:
BEGIN GCOMP7
AC (.......) ! this is the option line
%! this is format line 1
..... frequency goes here
%! this is format line 2
..... data goes here
END
Option line syntax:
AC(freq-dim parm-type power-nit parm_format R xx)
where:

Advanced Design System 2011.01 - Using Circuit Simulators

145

freq-dim = Sets the frequency units.
Options are HZ, KHZ, MHZ, or GHZ.

parm-type = S only.

power_dim = DBM only.

parm_format = Sets the format for S21 using MA, DB, RI, where:
MA declares magnitude and angle (degrees)
DB declares 20 • log10(MA) and angle (degrees)
RI declares real and imaginary

R xx = Declares resistance, where xx = reference resistance for S-parameters.

Format line:
There are two format lines:
% F format line 1
% PIN n21x, n21y format line 2
where:
F = Indicates that the following data point is the frequency (only one frequency can be

specified).

PIN = The input power.

n21x,
n21y

= The S21 dB-differential data pair which may be expressed in DB, MA, or RI formats
(default is RI).

These lines give the order for the data in the lines to follow. All of the keywords
shown must be given in the format line. The order of these keywords is arbitrary.
Example:

BEGIN GCOMP7

AC(GHZ S DBM DB R 50.0)

! Optional Selection: HZ, KHZ, MKZ, or GHZ; Default is GHZ

! Optional Selection: S only; Default is S

! Optional Selection: DBM only; Default is DBM

! Optional Selection: MA, DB, or RI; Default is RI

! Optional Selection: R xx;

! where xx = reference resistance;

! Default R 50.0

! The S2D file format allows gain compression data at

! multiple frequencies to be specified in the GCOMP7 block.

! Note, however, that the AmplifierS2D component - with which

! many S2D files are later associated - cannot interpolate

! between gain compression data at different frequencies but

! uses a fixed frequency specified by the parameter GCfreq.

% F

 5.

% PIN N21x N21y

 0.0 0.000 0.000

 2.0 -0.012 0.173

 4.0 -0.027 0.399

 6.0 -0.046 0.697

 8.0 -0.074 1.162

 10.0 -0.116 1.988

 12.0 -0.186 2.996

 14.0 -0.397 3.754

 16.0 -0.904 3.729

 18.0 -1.718 3.585

 20.0 -2.856 4.337

END

 Complete .s2d File Example

! ---

! amps2d.s2d

! ---

! This is a sample S2D data file containing an activated ACDATA block,

! an activated NDATA block and examples of all seven types of GCOMPx

! blocks, of which, only the GCOMP1 block is activated. A functional

! S2D file should contain only one type of GCOMPx block. An S2D file

! may also contain an IMTDATA block. For details see documentation

! on IMT data files.

! ---

!

BEGIN ACDATA

! This line and all lines starting with a comment (!) character are

! ignored. Do not have a blank line, or comments as the first line in

! this file. ACDATA is an optional block of data for an S2D file.

! However, some components such as AmplifierS2D require the existence

! of this block.

Advanced Design System 2011.01 - Using Circuit Simulators

146

! The following is the OPTION line

AC(GHZ S RI R 50.0 FC 1. 0.)

! Optional Selection: HZ, KHZ, MKZ, or GHZ; Default is GHZ

! Optional Selection: S, Z, Y, H, or G; Default is S

! Optional Selection: MA, DB, or RI; Default is RI

! Optional Selection: R xx;

! where xx = reference resistance;

! Default R 50.0

! Optional Selection: FC x1 x2 is for frequency conversion:

! Fout=x1*Fin + x2

! Default is Fout = Fin

% F n11x n11y n21x n21y n12x n12y n22x n22y

! The above line is the format line showing the order in the

! following data lines

! The columns of data can be in any order

1.0000 0.3926 -0.1211 -0.0003 -0.0021 -0.0003 -0.0021 0.3926 -0.1211

2.0000 0.3517 -0.3054 -0.0096 -0.0298 -0.0096 -0.0298 0.3517 -0.3054

3.0000 0.0430 -0.5916 -2.6933 -0.1433 -0.5933 -0.1433 0.0430 -0.5916

4.0000 0.4071 -0.2756 2.4617 0.6234 0.3617 0.4234 0.4071 -0.2756

5.0000 0.2041 0.2880 2.6848 -0.5367 0.3848 -0.4367 0.2041 0.2880

6.0000 0.5666 0.0343 2.0383 -0.7437 0.0383 -0.7437 0.5666 0.0343

7.0000 0.0430 0.6916 -2.6933 0.1433 -0.6933 0.1433 0.0430 0.6916

8.0000 0.3059 0.5659 -0.1000 0.1424 -0.1000 0.1424 0.3059 0.5659

9.0000 0.3071 0.4145 -0.0307 0.0673 -0.0307 0.0673 0.3071 0.4145

10.0000 0.3419 0.3336 -0.0134 0.0379 -0.0134 0.0379 0.3419 0.3336

END

BEGIN NDATA

! This is an optional block of data

AC(GHZ RI S R 50.0)

! Optional Selection: HZ, KHZ, MKZ, or GHZ; Default is GHZ

! Optional Selection: S, Z, Y, H, or G; Default is S

! Optional Selection: MA, DB, or RI; Default is RI

! Optional Selection: R xx;

! where xx = reference resistance;

! Default R 50.0

% F nfmin n11x n11y rn

! The above line is the format line showing the order in the

! following data lines.

! The columns of data can be in any order

1.0000 2.0000 0.3926 -0.1211 .4

2.0000 2.5000 0.3517 -0.3054 .45

3.0000 3.0000 0.0430 -0.5916 .5

4.0000 3.5000 0.4071 -0.2756 .55

5.0000 4.0000 0.2041 0.2880 .6

6.0000 4.5000 0.5666 0.0343 .65

7.0000 5.0000 0.0430 0.6916 .7

8.0000 5.5000 0.3059 0.5659 .75

9.0000 6.0000 0.3071 0.4145 .8

10.0000 6.5000 0.3419 0.3336 .85

END

! In place of a GCOMP1 block of data there can be either of the

! following blocks:

! GCOMP2, GCOMP3, GCOMP4, GCOMP5, GCOMP6, GCOMP7

! An example of each of these are given below and only GCOMP1

! is activated for this sample file.

BEGIN GCOMP1

% IP3

 25

END

! BEGIN GCOMP2

! % 1DBC

! 15

! END

! BEGIN GCOMP3

! % IP3 1DBC

! 25 15

! END

! BEGIN GCOMP4

! % IP3 PS GCS

! 25 25 5

! END

! BEGIN GCOMP5

! % 1DBC PS GCS

! 15 25 5

! END

! BEGIN GCOMP6

! % IP3 1DBC PS GCS

! 30 20 25 8

! END

! BEGIN GCOMP7

! # AC(GHZ S DBM DB R 50.0)

! ! Optional Selection: HZ, KHZ, MKZ, or GHZ; Default is GHZ

! ! Optional Selection: S only; Default is S

Advanced Design System 2011.01 - Using Circuit Simulators

147

! ! Optional Selection: DBM only; Default is DBM

! ! Optional Selection: MA, DB, or RI; Default is RI

! ! Optional Selection: R xx; where xx = reference resistance;

! ! Default R 50.0

! ! The S2D file format allows gain compression data at multiple

! ! frequencies to be specified in the GCOMP7 block. Note, however,

! ! that the Amplifier2 and AmplifierS2D components cannot interpolate

! ! between gain compression data at different frequencies but uses

! ! a fixed frequency specified by the parameter GCfreq.

! % F

! 5.

! % PIN N21x N21y

! 0.0 0.000 0.000

! 2.0 -0.012 0.173

! 4.0 -0.027 0.399

! 6.0 -0.046 0.697

! 8.0 -0.074 1.162

! 10.0 -0.116 1.988

! 12.0 -0.186 2.996

! 14.0 -0.397 3.754

! 16.0 -0.904 3.729

! 18.0 -1.718 3.585

! 20.0 -2.856 4.337

! END

!

! ---

 IMT Format
 Intermodulation table (IMT) data is used to represent the behavior of mixers and
frequency translators. Three distinct types of IMT formats are supported in ADS. See the
following sections for descriptions and examples:

O-Type IMT Format
A-Type IMT Format
B-Type IMT Format

 O-Type IMT Format

 Standard spur tables for mixers are defined in this format which allows only single side
banded (SSB), single-RF, single-LO mixing specification of IF voltage strengths in dB
(relative to IF fundamental) or dBm (absolute value). Such files contain only a single IMT
matrix preceded by an option line containing reference values of RF and LO signal
strengths. O-type IMT files do not contain any information regarding actual RF or LO
frequencies, and therefore, may be used to characterize a generic mixing process. Each
column of the table represents mixing due to one of the N harmonics of the LO tone and
each row represents mixing one of the M harmonics of the RF tone.

 Example O-Type IM Table

In the following O-type IM table, five LO harmonics are mixed with three RF harmonics. All
values are non-negative and the IF fundamental strength is 0 dB. This indicates that all
the spurs are suppressed with respect to the IF fundamental by the specified value. Thus,
the IM products for 3*RFfreq + 2*LOfreq and 3*RFfreq - 2*LOfreq are both suppressed by
69 dB below the strength of the IF fundamental when reference RF and LO powers at
mixer inputs are -10 dBm and +7 dBm respectively. There is no specific distinction
between sum and difference products, and the table contains no information about IF
phase.

! O-type IMT file

BEGIN IMTDATA

! Option line for reference power at:

! RF = -10 dBm, LO = +7 dBm

IMT (-10 7)

! Format line for LO-side harmonics

% 0 1 2 3 4 5

 99 26 35 39 50 41

 24 0 35 13 40 24

Advanced Design System 2011.01 - Using Circuit Simulators

148

 73 73 74 70 71 64

 67 64 69 50 77 47

END IMTDATA

 A-Type IMT Format

 IM tables extracted from mixers in simulation environment are defined in this format
which allows double side banded (DSB), single-RF, single-LO mixing specification of IF
voltage strengths in dBm (absolute value). Such files may contain multiple IMT matrices
each captured at specific levels of RF and LO powers and input frequencies. A-type IMT
files therefore contain frequency specific information, and may be used for interpolation
across modest spans of RF or LO frequency and power variation. Each column of the table
represents mixing due to one of the N harmonics of the LO tone, and each row represents
mixing one of the M harmonics of the RF tone. Both positive (sum) and negative
(difference) rows are represented in the table as shown by the value of the first column.

 Example A-Type IM Table

In the following A-type IM table two LO harmonics are mixed with two RF harmonics. The
IM product for 2*RFfreq + 2*LOfreq is -40 dBm at 23 degrees phase; whereas, the
product for 2*RFfreq - 2*LOfreq is -50 dBm at -41 degrees phase when reference RF and
LO powers at mixer inputs are -10 dBm and +7 dBm respectively, and reference
frequencies are RFfreq=2 GHz and LOfreq=1.7 GHz. Although, for the difference tone the
table shows -2*FRF + 2*FLO, given that FLO < FRF in this case, we get the phase as -41
degrees by taking the complex conjugate of the value on file which is +41 degrees. To
represent a physically feasible system, the values in the first complex column which
contain harmonics of the RF tone, should be complex conjugates when mirrored across the
DC spur. Thus the spur at N=0, M=m should be the complex conjugate of the spur at
N=0, M=-m.

! A-type IMT file

BEGIN IMTDATA

! Option line for reference power at:

! RF = -10 dBm, LO = +7 dBm

IMT (GHz S DBM R 50.0)

! Format line for RF frequency

% FRF

 2.0

! Format line for LO frequency

% FLO

 1.7

! Format line for reference RF power

% PRF

 -10

! Format line for reference LO power

% PLO

 -7

! Format line for LO-side harmonics

% M 0 1 2

 -2 -24 -77 -35 39 -50 41

 -1 -67 -64 -35 13 -40 24

 0 -99 73 -74 70 -71 64

 1 -67 64 -69 50 -77 47

 2 -24 77 -35 -33 -40 -23

END IMTDATA

 B-Type IMT Format

 IM tables extracted from mixers in the simulation environment are defined in this format
which allows double side banded (DSB), multi-RF, single-LO mixing specification of IF
voltage strengths in dBm (absolute value). Such files may contain multiple IMT matrices
each captured at specific levels of LO powers and frequencies. RF frequencies and powers
should remain constant throughout the file. B-type IMT files therefore contain frequency
specific information, and may be used for interpolation across modest spans of LO
frequency and power variation at nominal RF powers and frequencies. Each column of the
table represents mixing due to one of the N harmonics of the LO tone and each row
represents mixing the various harmonics of the RF tones. Both positive (sum) and

Advanced Design System 2011.01 - Using Circuit Simulators

149

negative (difference) rows are represented in the table as shown by the value of the first r
columns where r RF tones are active at the mixer's signal input.

To represent a physically feasible system, the values in the first complex column which
contain pure RF on RF mixing, should be complex conjugates when mirrored across the DC
spur. Thus the spur at N=0, M1=m1 M2=m2 should be the complex conjugate of the spur
at N=0, M1=-m1, M2=-m2.

 Example B-Type IM Table

In the following B-type IM table two LO harmonics are mixed with two RF harmonics of the
first RF tone and one harmonic of the second RF tone. The IM product for 2*RFfreq1 -
RFfreq2 + 2*LOfreq is -71 dBm at 64 degrees phase; whereas, the product at -RFfreq1 +
RFfreq2 is -45 dBm +66 degrees.

! B-type IMT file

BEGIN IMTDATA

! Option line

IMT (GHz S DBM R 50.0)

! Format line for RF frequency

% FRF1 FRF2

 2.0 2.1

! Format line for LO frequency

% FLO

 1.7

! Format line for reference RF power

% PRF1 PRF2

 -10 -15

! Format line for reference LO power

% PLO

 -7

! Format line for LO-side harmonics

% M1 M2 0 1 2

 -2 -1 -24 -77 -35 39 -50 41

 -2 0 -67 -64 -35 13 -40 24

 -2 1 -77 23 -74 70 -71 64

 -1 -1 -45 -32 -69 50 -77 47

 -1 0 -43 -97 -35 -33 -40 -23

 -1 1 -24 -77 -35 39 -50 41

 0 -1 -67 64 -35 13 -40 24

 0 0 -99 73 -74 70 -71 64

 0 1 -67 -64 -69 50 -77 47

 1 -1 -24 77 -35 -33 -40 -23

 1 0 -43 97 -37 -29 -55 -23

 1 1 -45 32 -71 82 -50 41

 2 -1 -77 -23 -74 70 -71 64

 2 0 -67 64 -69 50 -77 47

 2 1 -24 77 -35 -33 -40 -23

END IMTDATA

 SPW Format
 These files contain time-domain waveform data and are signal data files in SPW format.
Advanced Design System can interface with the Cadence Alta Group SPW format through
the use of data files in SPW format. Both ASCII (.ascsig) and binary (.sig) file formats
are supported.

 The SPW version 3.0 data file format is fully supported for real double data and partially
supported for complex double data.

 Guidelines for .ascsig

The SPW version 3.0 data file format must be used.
Comments can only be included on the one line following the $USER_COMMENT
statement.
A blank line must be included above the statements $COMMON_INFO and Sampling
Frequency.

Advanced Design System 2011.01 - Using Circuit Simulators

150

 Example .ascsig Files

 There are two examples, one uses real values and the second uses complex numbers.

File 1: Real double-data format

$SIGNAL_FILE 9

$USER_COMMENT

$COMMON_INFO

SPW Version = 3.0

Sampling Frequency = 1

Starting Time = 0

$DATA_INFO

Number of points = 6

Signal Type = Double

$DATA

1.000000000000000000000

1.000000000000000000000

- 1.000000000000000000000

- 1.000000000000000000000

1.000000000000000000000

1.000000000000000000000

File 2: Complex double-data format

$SIGNAL_FILE 9

$USER_COMMENT

$COMMON_INFO

SPW Version = 3.0

Sampling Frequency = 1

Starting Time = 0

$DATA_INFO

Number of points = 10

Signal Type = Double

Complex Format = Real_Imag

$DATA

1.000000000000000000000+j1.000000000000000000000

1.000000000000000000000+j1.000000000000000000000

- 1.000000000000000000000+j1.000000000000000000000

- 1.000000000000000000000+j1.000000000000000000000

1.000000000000000000000+j1.000000000000000000000

1.000000000000000000000+j1.000000000000000000000

- 1.000000000000000000000+j1.000000000000000000000

- 1.000000000000000000000+j1.000000000000000000000

- 1.000000000000000000000+j1.000000000000000000000

-1.000000000000000000000+j1.000000000000000000000

 TIM Format
 The .tim file is a signal data file in MDIF format. It contains time-domain waveform data
for defining the signals associated with certain sources.

The general .tim file format is:

BEGIN TIMEDATA
T (SEC V R xx)
% time voltage
<data line>
...
<data line>
END

 The BINTIM Format

The BINTIM format (.bintim) is for binary time-domain waveform data files. In .bintim
files, the format is the same as .tim files, except the BEGIN line is preceded by a line
indicating the number of data points, n:

Advanced Design System 2011.01 - Using Circuit Simulators

151

NUMBER OF DATA n

The <data line> in a .bintim file is just a binary dump of all the waveform (time, voltage)
data. Also, there is no END line.

Note
The .bintim format is not supported in the Data File Tool. However, certain signal processing components
can read .bintim files.

 Guidelines for .tim Files

An exclamation point (!) at the beginning of a line makes it a comment line.
Characters following the ! are ignored by the program.
The TIMEDATA data block is required.
When the file reader reads a file, it renames the independent and dependent variable
names regardless of the names specified in the file. The file reader reads the
independent variable name as time , and the dependent variable name as voltage .

 TIMEDATA Block

The BEGIN statement:
BEGIN TIMEDATA ! Begin time-domain waveform data
Option line:
T (time_unit data_unit R xx)
where:
= Delimiter tells the program you are specifying these parameters.

T = Time

time_unit = Sets time units. Options are SEC, MSEC, USEC, NSEC, PSEC.

data_unit = Set the units for the voltage values. Options are:
V = volts
MV = millivolts

R xx = Sets resistance, where xx = reference resistance. (default is 50.0)

Format line
% time voltage
where:
% = Delimiter tells the program you are specifying these

parameters

time = time

voltage = voltage

By design of the program, the syntax time and voltage in the Format line are
arbitrary. These values can be whatever you prefer. For example, an option line such
as:
% t mV
can be used. However, these values are converted to time and voltage by the file
reader when the .tim file is imported, and these will be the variables appearing in a
dataset (.ds) file.
The TIMEDATA data requirements are as follows:

Though a value for time=0 is not required, this can lead to erroneous results
when using the DataAccessComponent with its Extrapolation Mode set to Linear.
To avoid errors, set a value for time=0, set the DAC's Extrapolation Mode to
Constant, or do both.
The signal is assumed to be time periodic with the time period equal to
maximum time minus minimum time.

 Example .tim Files

BEGIN TIMEDATA

T (USEC V R 50)

% time voltage

 0.0 -1.0

 2.0 1.0

 4.0 2.0

Advanced Design System 2011.01 - Using Circuit Simulators

152

 8.0 3.0

 10.0 3.0

 14.0 0.0

 18.0 -1.0

 24.0 -2.0

 28.0 0.0

 32.0 -1.0

END

 This example file results in a time periodic voltage versus time with time period 32 µsec,
interpreted as a piece-wise linear voltage description.

 Time periodic voltage vs. Time with time period 32 µsec.

The following example shows how to handle the independent and dependent variable
names when using a DataAccessComponent. This is useful since the file reader reads the
independent variable name as time , and the dependent variable name as voltage ,
regardless of the names specified in the file. The following example data files shows the
variable names specified as t and v:

BEGIN TIMEDATA

% t v

 0 0

 1e-011 0.00995017

 2e-011 0.0198013

 5e-011 0.0487706

1.4e-010 0.130642

4.1e-010 0.33635

 1e-009 0.632121

END

Though the variable names are t and v , the file reader changes the names to time and
voltage , requiring the following syntax for the DataAccessComponent:

DataAccessComponent

Type=Time Domain Waveform (TIM MDIF)

iVar1="time"

iVal1=time

VAR

X=file{DAC1,"voltage"}

 Generic MDIF
 The generic MDIF provides a generalized MDIF format for unifying the various specific
MDIF formats, and overcoming some limitations of other formats. The generic format
enables diverse applications to use a common data I/O interface, so long as the intent is
to access/save multidimensional (multiple independent vs dependent variables) data.

The general format is as follows:

VAR var1Name(var1Type) = var1

ValueVAR var2Name(var2Type) = var2Value

..

VAR varNName(varNType) = varNValue

BEGIN blockName

% bVar1Name(bVar1Type) bVar2Name(bVar2Type)

% bVarLName(bVarLType) ...

% ...

% bVarQName(bVarQType) ... bVarPName(bVarPType)

Advanced Design System 2011.01 - Using Circuit Simulators

153

bVar1Value bVar2Value ...

bVarLValue ..

..

bVarQValue ... bVarPValue

bVar1Value bVar2Value ...

bVarLValue ..

..

bVarQValue ... bVarPValue

...

END

where var*Type can be the token:

0 or int
1 or real
2 or string

Type bVar*Type can be one of the above as well as:

3 or complex
4 or boolean
5 or binary
6 or octal
7 or hexadecimal
8 or byte16

The variable names above constitute a name-space uniquely identified by the string
blockName which is either:

alphanumeric: all bVar*Name block variables are dependent, except bVar1Name,
which is usually the most rapidly changing (innermost) independent variable.
or
DSCR(blockName): all bVar*Name block variables are dependent, and there is an
indexing implicit independent variable.

 Guidelines

A string type variable's value must be surrounded by "".

If there are multiple blocks, the outermost independent variables (e.g., VAR
var1Name(var1Type) = var1) apply only to the block immediately following the
variable definitions, and not to any other blocks.

The block data (bVar*Value) lines must follow the pattern (order, number of values
per line, and number of lines) of the format (%) lines. If the number of values in any
data line does not match the number of dependent variables specified in the
corresponding format (%) line, incorrect results will occur. A variable's value cannot
be split across lines. Although there is no line length limit specified, MDIF file readers
may choose to truncate at some finite length. This may result in a file read error, or,
if the file was carefully crafted, truncated names and/or string-type values.

Scale factors, which can be applied only to real numbers, may be case-insensitive
suffixes as follows:

f = 1e-15, p = 1e-12, n = 1e-9, u = 1e-6, mil = 2.54e-5, m = 1e-3,

k = 1e3, g = 1e9, t = 1e12

E.g.: 15mA = 15e-3, 30KHz = 30e3

There should be no space between the number and the suffix, and extra characters
are ignored. Unrecognized suffixes result in 1.0. The above is not totally consistent
with the rest of ADS.

The format of complex data is real/imag, with a column for real and a column for
imaginary.

Multidimensional data is organized by outer to inner independent variables. VAR
statements go from outermost to innermost.

Vary innermost independent variables first, proceeding toward outermost variables

Advanced Design System 2011.01 - Using Circuit Simulators

154

changing last.

Independent variables should change monotonically.

 Example

!==

! Example 1

REM This has 3 indepVars: v1, v2, v3(innermost) and

REM 4 depVars: dv1(integer), dv2(real), dv3(string) and

REM dv4(hexadecimal), but is read in as a string.

REM The outermost indepVars: v1, v2 apply only to the block

REM immediately following them, and not to any other block.

! There are 2 data nodes

VAR v1(0) = 1

VAR v2(1) = 2.2

BEGIN blk1

% v3(1) dv1(1) dv2(1) dv3(2) dv4(hexadecimal)

7.7 8 9.9999 "line 1" 0xabc

8.8 9 1.11 "line 2 " 0x123

END

VAR v1(0) = 2

VAR v2(1) = 3.2

BEGIN blk1

% v3(1) dv1(1) dv2(1) dv3(2) dv4(hexadecimal)

8.7 9uF 10.9999mA "line 1" 0xff

9.8 10uF 11.11mA "line 2 " 0xdef

END

!===

! Example 2

! Created Tue Mar 9 13:39:19 1999

! Data Acquired Tue Mar 9 13:38:34 1999

BEGIN NDATA_noise

% freq(real) Sopt(complex) NFmin(real) Rn(real) PortZ[1](real)

 1e+09 0.098481 0.017365 1 5 50

 2e+09 0.18794 0.068404 2 10 50

 3e+09 0.25981 0.15 3 15 50

 4e+09 0.30642 0.25712 4 20 50

 5e+09 0.32139 0.38302 5 25 50

 6e+09 0.3 0.51962 6 30 50

 7e+09 0.23941 0.65778 7 35 50

 8e+09 0.13892 0.78785 8 40 50

9.543e+09 -0.014122 0.911 9.5445 46.166 50

END

 X-parameter GMDIF Format
This section describes:

Choosing an X-parameter file for use with an XnP component
An overview of the X-parameter file
Examples of various details in X-parameter files

 Overview

These files contain X-parameter data for nonlinear n-port devices, or subcircuits. They are
ASCII files in GMDIF format. They use extension: .xnp.
The X-parameter files completely comply by Generic MDIF format. The specific block and
variable names used in the X-parameter GMDIF files are described in this section.
This section describes Version 2.0 X-parameter GMDIF files. Earlier versions generated by
NVNA are supported by ADS, but are not described here. Neither the dataset type of X-
parameter files have been discussed here.
An X-parameter GMDIF file can be used with an XnP component to model the behavior of
a nonlinear device or subcircuit using X-parameters. The file contains the X-parameters,
the component is placed within the schematic.

 Linking an X-parameter GMDIF File to an XnP Component

To link a file to the component:

Add an XnP component to your schematic. It can be found in the Data Items library.1.
Select the File parameter. Ensure that the Parameter Entry Mode is set to Network2.

Advanced Design System 2011.01 - Using Circuit Simulators

155

Parameter File Name.
In the File Name field, enter the name of the file you want to use:3.

You can type the name directly in the field.
Click Data files list to locate a file in the current workspace (or any files located
based on the setting of the DATAFILES variable in de_sim.cfg).
Click Browse to locate a file outside the current workspace.
Click Copy template to select an example file that you can customize.

After you select a file, click Edit if you want to view the file or change its contents.4.
Select GMDIF as the File Type. You need to do this since the default is Dataset.5.
For instructions on how to set the remaining parameters, click Help in the open
component dialog box.

 Comments

Comments in the GMDIF files are supported using "!" or "REM" statement. The "!" may
appear at the beginning of a line, or as a trailing comment at the end of a line. "REM",
however, may only serve as a leading comment at the beginning of a line.
Version 2.0 X-parameter GMDIF files contain a pre-defined comment section at the
beginning of the files, which provides useful information about the range of operating
conditions covered by the data.

 Example

! Created Fri Jul 10 15:29:17 2009

! Version = 2.0

! HB_MaxOrder = 9

! XParamMaxOrder = 3

! NumExtractedPorts = 3

! fund_1=[1e+09->1.4e+09] NumPts=5

! VDC_3=[10->11] NumPts=2

! ZM_2_1=50 NumPts=1

! ZP_2_1=0 NumPts=1

! AN_1_1=[3.16228e-03(-20.000000dBm)->70.7107e-03(6.989700dBm)] NumPts=36

The version of the file is stated just for convenience. The statement determining the
version is elsewhere. The comment "HB_MaxOrder = 9" tells you that the Harmonic
Balance with MaxOrder=9 was used by X-Parameter Generator. The comment
"XParamMaxOrder = 3" tells you that the X-parameter data in this file contains mixing
indices up to the 3rd order.
The comment "NumExtractedPorts = 3" indicates the total number of ports used for X-
parameter generation. In case of non-consecutive port numbering this value may be
smaller than the highest port number.
The lower part of this comment section indicates various independent variables together
with the covered sweeps for each of them. See X-parameter Independent Variables for
explanation of the variable names.

 X-parameter GMDIF File Blocks

Version 2.0 of X-parameter GMDIF files contains three types of blocks:

XParamAttributes
XParamPortData
XParamData

The first two blocks appear only once in the file. The third block appears as many times as
the number of distinct different sweep points present in the data for all but the innermost
independent variable. The following sections provide details for these blocks.

 XParamAttributes Block

The XParamAttributes block provides the vehicle for the official statements of (1) the
file version, (2) the number of ports, and (3) the number of fundamental frequencies
(tones).

 Example

BEGIN XParamAttributes

% Index(int) Version(real) NumPorts(int) NumFundFreqs(int)

 0 2.0 3 1

END

Advanced Design System 2011.01 - Using Circuit Simulators

156

The sole purpose of the Index column is compliance with the Generic MDIF format.
The NumPorts entry indicates the highest port index in the data and the specific XnP
component to be used (X3P in this case).

 XParamPortData Block

The XParamPortData block provides reference impedances for the incident and reflected
waves at each port covered by the data. The reference impedances can be complex and
the power definition of the waves is used, as follows:

In the above equations, Vp and Ip represent amplitude phasors.

 Example

BEGIN XParamPortData

% PortNumber(int) RefZ0(complex) PortName(string)

 1 50 0 "Input"

 2 50 0 "Output"

 3 50 0 "VDC"

END

The XParamPortData block also includes the port names. This information is particularly
useful in proper hookup of the XnP components in cases where more than two ports are
present and a mixture of port types is used.

 XParamData Block

The XParamData block provides the actual X-parameters. This block may appear many
times in the file, each containing X-parameters at one sweep point (of all but the
innermost independent variable) at a time.
Each XParamData block is preceded by m-1 VAR statements for m-1 independent
variables, where m is the total number of independent variables. These VAR statements
provide the types and the values of the independent variables. These values apply to the
XParamData block immediately following the VAR statements, and only to that block.

 Example

VAR fund_1(real) = 1e+09

VAR VDC_3(real) = 10

VAR ZM_2_1(real) = 50

VAR ZP_2_1(real) = 0

BEGIN XParamData

% AN_1_1(real) FI_3(real) FB_1_1(complex) ...

...

...

...

END

The last, mth, independent variable is the innermost variable and is placed as the first
variable inside the block. In the above example that variable is "AN_1_1".
The naming convention for the independent variables in X-parameter files is described in
X-parameter Independent Variables.
All the dependent variables (the X-parameters) are provided inside the block. Following
the mth independent variable, the names and the types of the dependent variables are
specified in the header lines (lines starting with a "%" character). The header lines are
specified once per block at the beginning of the block. They are then followed by as many
data groups as the number of sweep points of the innermost independent variable. Each
group consists of data values formatted into lines exactly in the same way as the block
header lines with each entry representing a value of the correspondingly placed variable in
the header lines. Complex data is specified in the rectangular format (real, imaginary) by
two numbers.

 Example

VAR fund_1(real) = 1e+09

VAR VDC_3(real) = 10

VAR ZM_2_1(real) = 50

VAR ZP_2_1(real) = 0

Advanced Design System 2011.01 - Using Circuit Simulators

157

BEGIN XParamData

% AN_1_1(real) FI_3(real) FB_2_1(complex) S_1_2_2_2(complex)

0.0657 -0.32 0.113 1.01 0.222 -0.0031

0.0667 -0.33 0.111 1.02 0.222 -0.0034

0.0677 -0.34 0.110 1.05 0.222 -0.0039

END

In the above example the complex number (0.111 + j1.02) is the value of the dependent
variable FB_2_1 at the multidimensional point established by all the values of the
independent variables, including the value of 0.0667 of AN_1_1.
The naming convention for the dependent variables in X-parameter files is described in X-
parameter Dependent Variables.

 X-parameter Variables

 Notation

All independent and dependent variables are defined with respect to port and harmonic (or
mixing) indices. For each variable these indices, separated by the underscore character "",
form a string appending the reserved name of the variable. Negative indices, if allowed,
are represented by a string in which the "m" character is used in place of the minus ("-")
sign, with no space between the sign and the number. For example "_m2" represents the
index "-2". For clarity of presentation the following table shows the notation used in
indexing the X-parameters.

k fundamental frequency index; 1 in the case of single tone X-parameters;all consecutive numbers must be
present

p port index - a positive integer; may not be consecutive
pIn - denotes the "input" port index
pOut - denotes the "output" port index

n harmonic index; positive integer
nIn - denotes the harmonic on the "input" port
nOut - denotes the harmonic on the "output" port
in case of multi-tone X-parameters this a mixing index that is concatenated from harmonic indices w.r.t. to
subsequent fundamentals, for example "_1_m2_2" in the three-tone case refers to the mixing product f1-
2f2+2f3 - the index w.r.t. the first fundamental is expected to be non-negative and all-zero entries are not
allowed.

 Independent Variables

The following table lists all the supported independent variables in Version 2.0 X-
parameter files. See XnP Components (X1P - X10P) (ccsim) for equation details. In
general, all X-parameters are functions of some or all of these independent variables.
Their dependence is tabulated in the X-parameter files for all sweep points of the
independent variable values.
All independent variables are real numbers.

Advanced Design System 2011.01 - Using Circuit Simulators

158

fund_k kth fundamental frequency; assumed non-commensurate if more than one is present; fund_1 is
required

VDC_p DC voltage applied to port p; not required; mutually exclusive with IDC_p at the same port p

VDC_p DC current applied to port p; not required; mutually exclusive with VDC_p at the same port p

AN_p_n magnitude of a large-signal incident wave applied to port p at harmonic n; only one per each
fundamental is both allowed and required; phase of this incident wave is not tabulated in the X-
parameter files as this incident wave serves as a Reference Signal (xparam); power definition of
incident waves is used

AM_p_n magnitude of any other than Reference Signal (xparam) large-signal incident wave applied to port p
at harmonic n; required only if AP_p_n is used at the same port p and harmonic n; power definition
of incident waves is used

AP_p_n phase in degrees of any other than Reference Signal (xparam) large-signal incident wave applied to
port p at harmonic n; required only if AM_p_n is used at the same port p and harmonic n

GM_p_n magnitude of the reflection coefficient of the load at port p and harmonic n; required only if GP_p_n
is used at the same port p and harmonic n; power definition of the reflection coefficient and the
reference impedance specified for port p are used; mutually exclusive with other formats of
specifying load at the same port p and harmonic n

GP_p_n phase in degrees of the reflection coefficient of the load at port p and harmonic n; required only if
GM_p_n is used at the same port p and harmonic n; mutually exclusive with other formats of
specifying load at the same port p and harmonic n

GX_p_n
GY_p_n

alternative to GM_p_n and GP_p_n; real and imaginary parts of the reflection coefficient; mutually
exclusive with other formats of specifying load at the same port p and harmonic n

ZM_p_n
ZP_p_n

alternative to GM_p_n and GP_p_n; magnitude and phase of the load impedance; mutually exclusive
with other formats of specifying load at the same port p and harmonic n

ZX_p_n
ZY_p_n

alternative to GM_p_n and GP_p_n; real and imaginary parts of the load impedance; mutually
exclusive with other formats of specifying load at the same port p and harmonic n

 Dependent Variables

The following table provides the notation for the dependent variables (X-parameters) used
in Version 2.0 X-parameter files. See XnP Components (X1P - X10P) (ccsim) for equation
details. The X-parameters can be either real or complex numbers. In the latter case the
rectangular format (real and imaginary parts) is used. It is not essential for any specific
dependent variable to be present in an X-parameter file. In general, the default value is
zero for any absent parameter that could otherwise be included in the file (some
parameters are mutually exclusive with some other parameters).

Advanced Design System 2011.01 - Using Circuit Simulators

159

FB_pOut_nOut complex B-type X-parameter - measured reflected wave at output port pOut and
harmonic nOut as the response to all large-signal excitations (i.e., under the
large-signal operating conditions); power definition of the reflected waves is
used

FI_pOut real I-type X-parameter - DC current measured at output port pOut under the
large-signal operating conditions

FV_pOut real V-type X-parameter - DC voltage measured at output port pOut under the
large-signal operating conditions

S_pOut_nOut_pIn_nIn complex S-type X-parameter providing the small-signal added-contribution to the
reflected wave at output port pOut and harmonic nOut due to a small-signal
incident wave at input port pIn and harmonic nIn measured under the large-
signal operating conditions; power definition of the incident and reflected
waves is used

T_pOut_nOut_pIn_nIn complex T-type X-parameter providing the small-signal added-contribution to the
reflected wave at output port pOut and harmonic nOut due to a phase-
reversed small-signal incident wave at input port pIn and harmonic nIn
measured under the large-signal operating conditions; power definition of
the incident and reflected waves is used

XY_pOut_pIn_nIn complex Y-type X-parameter providing the small-signal contribution to the DC current
at output port pOut due to a small-signal incident wave at input port pIn and
harmonic nIn measured under the large-signal operating conditions; power
definition of the incident waves is used; the real-valued contribution to the
DC current is the real part of complex product of this X-parameter and the
corresponding incident wave

Yre_pOut_pIn_nIn
Yim_pOut_pIn_nIn

real
real

alternative to XY_p_n, obsolete in Version 2.0 X-parameter files; two real
numbers: the real part and negative of the imaginary part are provided
instead of one complex number, as XY = Yre - j*Yim

XZ_pOut_pIn_nIn complex Z-type X-parameter providing the small-signal contribution to the DC voltage
at output port pOut due to a small-signal incident wave at input port pIn and
harmonic nIn measured under the large-signal operating conditions; power
definition of the incident waves is used; the real-valued contribution to the
DC voltage is the real part of complex product of this X-parameter and the
corresponding incident wave

Zre_pOut_pIn_nIn
Zim_pOut_pIn_nIn

real
real

alternative to XZ_p_n, obsolete in Version 2.0 X-parameter files; two real
numbers: the real part and negative of the imaginary part are provided
instead of one complex number, as XZ = Zre - j*Zim

 Restrictions

If the independent variable VDC_pOut is specified for the port pOut then neither the V-
type (FV_pOut) nor the Z-type (XZ_pOut_pIn_nIn, Zre_pOut_pIn_nIn, Zim_pOut_pIn_nIn
) X-parameters can be specified for the port pOut.
Similarly, if the independent variable IDC_pOut is specified for the port pOut then neither
the I-type (FI_pOut) nor the Y-type (XY_pOut_pIn_nIn, Yre_pOut_pIn_nIn,
Yim_pOut_pIn_nIn) X-parameters can be specified for the port pOut.

 CITIfile Data Format
 This section describes the CITIfile format definitions of key terms, and file examples. It
also includes:

Keyword reference
File guidelines
Instructions for converting between disk formats
Device-specific definitions
File name requirements

 Overview

CITIfile is a standardized data format that is used for exchanging data between different
computers and instruments. CITIfile stands for Common Instrumentation Transfer and
Interchange file format.

This standard is a group effort between instrument and computer-aided design program
designers. As much as possible, CITIfile meets current needs for data transfer, and it is
designed to be expandable so it can meet future needs.

CITIfile defines how the data inside an ASCII package is formatted. Since it is not tied to
any particular disk or transfer format, it can be used with any operating system, such as

Advanced Design System 2011.01 - Using Circuit Simulators

160

DOS or UNIX, with any disk format, such as DOS or HFS, or with any transfer mechanism,
such as by disk, LAN, or GPIB.

By careful implementation of the standard, instruments and software packages using
CITIfile are able to load and work with data created on another instrument or computer. It
is possible, for example, for a network analyzer to directly load and display data measured
on a scalar analyzer, or for a software package running on a computer to read data
measured on the network analyzer.

 Data Formats

There are two main types of data formats: binary and ASCII. CITIfile uses the ASCII text
format. Although this format requires more space than binary format, ASCII data is a
transportable, standard type of format which is supported by all operating systems. In
addition, the ASCII format is accepted by most text editors. This allows files to be created,
examined, and edited easily, making CITIfile easier to test and debug.

 File and Operating System Formats

CITIfile is a data storage convention designed to be independent of the operating system,
and therefore may be implemented by any file system. However, transfer between file
systems may sometimes be necessary. You can use any software that has the ability to
transfer ASCII files between systems to transfer CITIfile data. Refer to Converting
Between Disk Formats for more information.

The descriptions and examples shown here demonstrate how CITIfile may be used to
store and transfer both measurement information and data. The use of a single, common
format allows data to be easily moved between instruments and computers.

 CITIfile Definitions

 This section defines: package , header , data array , and keyword .

 Package

 A typical CITIfile package is divided into two parts:

The header is made up of keywords and setup information.
The data usually consists of one or more arrays of data.

The following example shows the basic structure of a CITIfile package:

When stored in a file there may be more than one CITIfile package. With the Agilent 8510
network analyzer, for example, storing a memory all will save all eight of the memories
held in the instrument. This results in a single file that contains eight CITIfile packages .

 Header

 The header section contains information about the data that will follow. It may also
include information about the setup of the instrument that measured the data. The

Advanced Design System 2011.01 - Using Circuit Simulators

161

CITIfile header shown in the first example has the minimum of information necessary; no
instrument setup information was included.

 Data Array

 An array is numeric data that is arranged with one data element per line. A CITIfile
package may contain more than one array of data. Arrays of data start after the BEGIN
keyword, and the END keyword follows the last data element in an array.

A CITIfile package does not necessarily need to include data arrays. For instance, CITIfile
could be used to store the current state of an instrument. In that case the keywords VAR ,
BEGIN , and END would not be required.

When accessing arrays via the DAC (DataAccessComponent), the simulator requires array
elements to be listed completely and in order.

Example: S[1,1], S[1,2], S[2,1], S[2,2]

 Keywords

 Keywords are always the first word on a new line. They are always one continuous word
without embedded spaces. A listing of all the keywords used in version A.01.00 of CITIfile
is shown in CITIfile Keyword Reference.

 CITIfile Examples

 The following are examples of CITIfile packages.

 Display Memory File

This example shows an Agilent 8510 display memory file. The file contains no frequency
information. Some instruments do not keep frequency information for display memory
data, so this information is not included in the CITIfile package.

Note that instrument-specific information (#NA = network analyzer information) is also
stored in this file.

CITIFILE A.01.00

#NA VERSION HP8510B.05.00

NAME MEMORY

#NA REGISTER 1

VAR FREQ MAG 5

DATA S RI

BEGIN

-1.31189E-3,-1.47980E-3

-3.67867E-3,-0.67782E-3

-3.43990E-3,0.58746E-3

-2.70664E-4,-9.76175E-4

0.65892E-4,-9.61571E-4

END

 Agilent 8510 Data File

This example shows an 8510 data file, a package created from the data register of an
Agilent 8510 network analyzer. In this case, 10 points of real and imaginary data was
stored, and frequency information was recorded in a segment list table.

CITIFILE A.01.00

#NA VERSION 8510B.05.00

NAME DATA

#NA REGISTER 1

VAR FREQ MAG 10

Advanced Design System 2011.01 - Using Circuit Simulators

162

DATA S[1,1] RI

SEG_LIST_BEGIN

SEG 1000000000 4000000000 10

SEG_LIST_END

BEGIN

0.86303E-1,-8.98651E-1

8.97491E-1,3.06915E-1

-4.96887E-1,7.87323E-1

-5.65338E-1,-7.05291E-1

8.94287E-1,-4.25537E-1

1.77551E-1,8.96606E-1

-9.35028E-1,-1.10504E-1

3.69079E-1,-9.13787E-1

7.80120E-1,5.37841E-1

-7.78350E-1,5.72082E-1

END

 Agilent 8510 3-Term Frequency List Cal Set File

This example shows an 8510 3-term frequency list cal set file. It shows how CITIfile may
be used to store instrument setup information. In the case of an 8510 cal set, a limited
instrument state is needed to return the instrument to the same state that it was in when
the calibration was done.

Three arrays of error correction data are defined by using three DATA statements. Some
instruments require these arrays be in the proper order, from E[1] to E[3] . In general,
CITIfile implementations should strive to handle data arrays that are arranged in any
order.

CITIFILE A.01.00

#NA VERSION 8510B.05.00

NAME CAL_SET

#NA REGISTER 1

VAR FREQ MAG 4

DATA E[1] RI

DATA E[2] RI

DATA E[3] RI

#NA SWEEP_TIME 9.999987E-2

#NA POWER1 1.0E1

#NA POWER2 1.0E1

#NA PARAMS 2

#NA CAL_TYPE 3

#NA POWER_SLOPE 0.0E0

#NA SLOPE_MODE 0

#NA TRIM_SWEEP 0

#NA SWEEP_MODE 4

#NA LOWPASS_FLAG -1

#NA FREQ_INFO 1

#NA SPAN 1000000000 3000000000 4

#NA DUPLICATES 0

#NA ARB_SEG 1000000000 1000000000 1

#NA ARB_SEG 2000000000 3000000000 3

VAR_LIST_BEGIN

1000000000

2000000000

2500000000

3000000000

VAR_LIST_END

BEGIN

1.12134E-3,1.73103E-3

4.23145E-3,-5.36775E-3

-0.56815E-3,5.32650E-3

-1.85942E-3,-4.07981E-3

END

BEGIN

2.03895E-2,-0.82674E-2

-4.21371E-2,-0.24871E-2

0.21038E-2,-3.06778E-2

1.20315E-2,5.99861E-2

END

BEGIN

4.45404E-1,4.31518E-1

8.34777E-1,-1.33056E-1

-7.09137E-1,5.58410E-1

4.84252E-1,-8.07098E-1

END

Advanced Design System 2011.01 - Using Circuit Simulators

163

When an instrument's frequency list mode is used, as it was in this example, a list of
frequencies is stored in the file after the VAR_LIST_BEGIN statement. The unsorted
frequency list segments used by this instrument to create the VAR_LIST_BEGIN data are
defined in the #NA ARB_SEG statements.

 2-Port S-Parameter Data File

This example shows how a CITIfile can store 2-port S-parameter data. The independent
variable name FREQ has two values located in the VAR_LIST_BEGIN section. The four
DATA name definitions indicate there are four data arrays in the CITIfile package located
in the BEGIN...END sections. The data must be in the correct order to ensure values are
assigned to the intended ports. The order in this example results in data assigned to the
ports as shown in the table that follows:

CITIFILE A.01.00

NAME BAF1

VAR FREQ MAG 2

DATA S[1,1] MAGANGLE

DATA S[1,2] MAGANGLE

DATA S[2,1] MAGANGLE

DATA S[2,2] MAGANGLE

VAR_LIST_BEGIN

1E9

2E9

VAR_LIST_END

BEGIN

0.1, 2

0.2, 3

END

BEGIN

0.3, 4

0.4, 5

END

BEGIN

0.5, 6

0.6, 7

END

BEGIN

0.7, 8

0.8, 9

END

DATA FREQ = 1E9 FREQ = 2E9

s[1,1] s[0.1,2] s[0.2,3]

s[1,2] s[0.3,4] s[0.4,5]

s[2,1] s[0.5,6] s[0.6,7]

s[2,2] s[0.7,8] s[0.8,9]

 CITIfile Keyword Reference

 The following table lists keywords, definitions, and examples.

 CITIfile Keywords and Definitions

Advanced Design System 2011.01 - Using Circuit Simulators

164

Keyword Example and Explanation

CITIFILE Example: CITIFILE A.01.00
Identifies the file as a CITIfile and indicates the revision level of the file. The CITIFILE
keyword and revision code must precede any other keywords.
The CITIFILE keyword at the beginning of the package assures the device reading the file
that the data that follows is in the CITIfile format.The revision number allows for future
extensions of the CITIfile standard.
The revision code shown here following the CITIFILE keyword indicates that the machine
writing this file is using the A.01.00 version of CITIfile as defined here. Any future extensions
of CITIfile will increment the revision code.

NAME Example: NAME CAL_SET
Sets the current CITIfile package name. The package name should be a single word with no
embedded spaces. Some standard package names:
RAW_DATA : Uncorrected data.
DATA: Data that has been error corrected. When only a single data array exists, it should be
named DATA .
CAL_SET: Coefficients used for error correction.
CAL_KIT: Description of the standards used.
DELAY_TABLE: Delay coefficients for calibration.

VAR Example: VAR FREQ MAG 201
Defines the name of the independent variable (FREQ); the format of values in a
VAR_LIST_BEGIN table (MAG) if used; and the number of data points (201).

CONSTANT Example: CONSTANT name value
Lets you record values that do not change when the independent variable changes.

Example: #NA POWER1 1.0E1
Lets you define variables specific to a particular type of device. The pound sign (#) tells the
device reading the file that the following variable is for a particular device.
The device identifier shown here (NA) indicates that the information is for a network
analyzer. This convention lets you define new devices without fear of conflict with keywords
for previously defined devices. The device identifier can be any number of characters.

SEG_LIST_BEGIN Indicates that a list of segments for the independent variable follows.
Segment Format: segment type start stop number of points
The current implementation supports only a signal segment. If you use more than one
segment, use the VAR_LIST_BEGIN construct. CITIfile revision A.01.00 supports only the SEG
(linear segment) segment type.

SEG_LIST_END Sets the end of a list of independent variable segments.

VAR_LIST_BEGIN Indicates that a list of the values for the independent variable (declared in the VAR
statement) follows. Only the MAG format is supported in revision A.01.00.

VAR_LIST_END Sets the end of a list of values for the independent variable.

DATA Example: DATA S[1,1] RI
Defines the name of an array of data that will be read later in the current CITIfile package ,
and the format that the data will be in. Multiple arrays of data are supported by using
standard array indexing as shown above. CITIfile revision A.01.00 supports only the RI (real
and imaginary) format, and a maximum of two array indexes.
Commonly used array names include:
S – S parameter
E – Error Term
Voltage – Voltage
VOLTAGE_RATIO – a ratio of two voltages (A/R)

 CITIfile Guidelines

 The following general guidelines aid in making CITIfiles universally transportable:

Line Length. The length of a line within a CITIfile package should not exceed 80
characters. This allows instruments which may have limited RAM to define a reasonable
input buffer length.

Keywords. Keywords are always at the beginning of a new line. The end of a line is as
defined by the file system or transfer mechanism being used.

Unrecognized Keywords. When reading a CITIfile, unrecognized keywords should be
ignored. There are two reasons for this:

Ignoring unknown keywords allows new keywords to be added, without affecting an
older program or instrument that might not use the new keywords. The older
instrument or program can still use the rest of the data in the CITIfile as it did
before. Ignoring unknown keywords allows "backwards compatibility" to be
maintained.
Keywords intended for other instruments or devices can be added to the same file

Advanced Design System 2011.01 - Using Circuit Simulators

165

without affecting the reading of the data.

Adding New Devices. Individual users are allowed to create their own device keywords
through the # (user-defined device) mechanism. (Refer to the table immediately above
for more information.) Individual users should not add keywords to CITIfiles without using
the # notation, as this could make their files incompatible with current or future CITIfile
implementations.

File Names. Some instruments or programs identify a particular type of file by characters
that are added before or after the file name. Creating a file with a particular prefix or
ending is not a problem. However in general an instrument or program should not require
any such characters when reading a file. This allows any file, no matter what the filename,
to be read into the instrument or computer. Requiring special filename prefixes and
endings makes the exchange of data between different instruments and computers much
more difficult.

 Converting Between Disk Formats

 Most current Agilent Technologies instruments use disks formatted in the Logical
Interchange Format (LIF). Some instruments also use DOS-formatted disks. CITIfiles
created on one file system (LIF, DOS, HFS, etc.) may be transferred to other file systems.
This is useful for designers using test equipment in addition to ADS to read/write CITIfiles.

 HFS

Several LIF and DOS utilities are available for HP-UX workstations. The HP-UX utilities lifcp
and doscp can transfer CITIfiles to and from LIF and DOS disks. Using lifcp and doscp are
similar; using lifcp is described below. Several other LIF and DOS utilities are also
available. Consult the documentation for these utilities for more detailed information.
Listing the contents of a LIF disk when using HP-UX would be similar to the following
example:

lifls /dev/rdsk/1s0.0

The device name used will depend on how your system was configured. Copying a CITIfile
named DD_FILED1 from a LIF disk to HFS would be similar to the following example:

lifcp /dev/rdsk/1s0.0: DD_FILED1 DD_FILED1

To copy a standard HFS ASCII file to a LIF disk:

lifcp DD_FILED1 /dev/rdsk/1s0.0: DD_FILED1

When used on an HFS disk, The HP-UX program RMB/UX (Rocky Mountain BASIC for HP-
UX) has the ability to write a CITIfile in either as a standard HFS ASCII file, or as a LIF
volume file. The LIF volume file is the default. This type of file is not directly readable
when using the HP-UX operating system, and the copy commands listed above will not
work correctly.

BASIC program writers are encouraged to detect when writing to an HFS disk, and to use
the standard HFS format. The program examples CITIWRITE and CITIDOALL show how
this can be done. However CITIfiles stored in the LIF volume format can still be
transferred to LIF disks, or converted to standard HFS files. To copy a LIF volume file
named DD_FILED stored on an HFS disk and move it to a LIF disk:

lifcp DD_FILED1:WS_FILE /dev/rdsk/1s0.0: DD_FILED1

To copy the LIF volume file DD_FILED1 to a standard HFS file named NEWFILE :

lifcp DD_FILED1:WS_FILE NEWFILE

 DOS

 Utilities are available for DOS machines that enable them to transfer files to and from a
LIF formatted disk. Many of these programs are menu-driven, and are available from the

Advanced Design System 2011.01 - Using Circuit Simulators

166

following companies: Agilent, Oswego, Meadow Soft Works, and Innovative Software
Systems.

 CITIfile Device-Specific Definitions

CITIfile is a generic definition of a data storage format for any type of computer or
instrument. However each type of device may need to define certain conventions for itself.
This section describes the device-specific keywords and conventions for current
implementations.

 Network Analyzer (#NA) Definitions

Data Grouping. Data arrays of the same type, obtained during a single measurement
operation, are stored in a single CITIfile package. For example, all error correction arrays
are stored in the same CITIfile package, and all parameters acquired during an s-
parameter measurement operation are stored in the same CITIfile package.

A CITIfile package is as described in the main CITIfile documentation: the CITIFILE
keyword, followed by a header section, usually followed by one or more arrays of data.

Note
There are some specific problems with the current version in reading and/or writing this data format. On
the Agilent EEsof web site, refer to the Release Notes in Product Documentation, and to Technical Support
for more information and workarounds (http://www.agilent.com/find/eesof).

Network Analyzer Keywords. The definition of CITIfile allows for statements that are
specific to a certain type of device. the following table lists the currently defined
commands for the #NA (network analyzer) keyword.

 Network Analyzer Keyword Commands

http://www.agilent.com/find/eesof
http://www.agilent.com/find/eesof

Advanced Design System 2011.01 - Using Circuit Simulators

167

Statement Explanation

#NA ARB_SEG x y
p

A list segment, as entered by the user.
xx = start value
y = stop value
p = number of points.

#NA REGISTER nn Register in instrument that the current data package was stored in.
nn = number of register.

#NA SWEEP_TIME

tt
The sweep time of the analyzer.
tt = time in seconds.

#NA POWER1 pp Power level of signal source #1.
pp = power in dBm.

#NA POWER2 pp Power level of signal source #2.
pp = power in dBm.

#NA PARAMS aa Bitmap of valid parameters for a calibration. Bit positions 1-8 represent the following:
Bit #1 = S11

Bit #2 = S21

Bit #3 = S12

Bit #4 = S22

Bit #5 = user1
Bit #6 = user2
Bit #7 = user3
Bit #8 = user4
A bit equal to one means that the calibration is valid for that parameter; a zero means that
the calibration is not valid for that parameter. Bit #0 is the least significant bit.

NA# CAL_TYPE cc The type of calibration used:
1 = response calibration.
2 = response and isolation calibration.
3 = one-port calibration on port 1.
4 = one-port calibration on port 2.
5 = two-port calibration (includes one-path full & TRL)

NA# POWER_SLOPE

ss
Change in power versus frequency.
ss = dBm/GHz

NA# SLOPE_MODE

mm
On/off flag for power slope.
mm = 0 = off
mm = 1 = on

NA# TRIM_SWEEP

tt
Linearity adjustment value for swept sources.

NA# SWEEP_MODE

ss
Type of sweep done to make measurement.
0 = swept
1 = stepped
2 = single-point
3 = fast CW
4 = list

NA#

LOWPASS_FLAG ff
Low-pass time domain flag.
ff = 0 = low-pass time domain enabled .
ff = 1 = low-pass time domain disabled .

NA# FREQ_INFO ii The frequency information flag.
ii = 0 = frequency information displayed on instrument screen.
ii = 1 = frequency information not displayed on instrument screen.

NA# DUPLICATES

dd
Delete duplicates flag. Determines if points listed more than once should be measured
more than once.
dd = 0 = points listed more than once are measured as many times as they are listed.
dd = 1 = points are measured only once.

NA# SPAN xx yy
pp

The sweep parameters:
xx = start value
yy = stop value
pp = number of points

NA# IF_BW gg The IF bandwidth setting of the receiver.
gg = IF bandwidth in Hertz.

 Error Array Numbering

 Current network analyzer implementations use between one and twelve error coefficient
arrays to perform error correction. The CAL_TYPE keyword description in Network Analyzer
(#NA) Definitions lists the currently defined calibration types. The following table defines
the meanings of each coefficient array with respect to the error model used.

 Network Analyzer Error Coefficient Arrays

Advanced Design System 2011.01 - Using Circuit Simulators

168

Error Array Name Frequency Response Response & Isolation All 1-Port All 2-Port

E1 Er or Et Ed or Ex Ed Edf

E2 - Er or Et Es Esf

E3 - - Er Erf

E4 - - - Exf

E5 - - - Elf

E6 - - - Etf

E7 - - - Edr

E8 - - - Esr

E9 - - - Err

E10 - - - Exr

E11 - - - Elr

E12 - - - Etr

 Disk Filename Requirements

 Some instruments or programs identify a particular type of file by characters that are
added before or after the file name. In general an instrument or program should not
require any such characters when reading a file.

There exist CITIfile implementations which do have file naming restrictions. This section
explains how to work around these restrictions.

 Agilent 8510 Series CITIfile

The 8510 checks the first 3 letters of the filename to determine what is stored in the file.
The file prefixes for an 8510 CITIfile are listed in the following table.

 Agilent 8510 CITIfile Prefixes

File Prefix File Contents Notes

RD_ Raw Data Raw (uncorrected data array(s).

DD_ Data Data Error corrected data array(s)

FD_ Formatted Data Corrected & formatted data
array.

DM_ Display Memory File holds one memory.

MA_ Display Memory All Holds all memories in 8510.

CS_ Cal Set One set of calibration data.

CA Cal Set All All sets of calibration data.

DT_ Delay Table One delay table.

DD_MYDATA is an example of a file name for a file that contains one array of corrected data.

The current 8510 CITIfile implementation is unable to read files unless they have the
prefixes above. It is expected that a future 8510 revision will remove this restriction.

 Agilent 8700 Series CITIfile

Storing a data file from an 8700-series analyzer in CITIfile format requires that you
choose the SAVE USING ASCII option.

The 8700 series of instruments check the last two characters of the filename to determine
what is stored in the file. The file endings for an 8700 CITIfile are listed in the following
table.

 Agilent 8700 CITIfile Filenames

Advanced Design System 2011.01 - Using Circuit Simulators

169

Last Two
Chars

File Contents Notes

Rx Raw Data x = 1 = channel 1.
x = 5 for channel 2.

Dx Data Data x = channel number.

Fx Formatted
Data

x = channel number.

Mx Display
Memory

x = channel number.

xy Cal Set x = channel number.
y = number of error coefficient arrays in the file. y is displayed in
hexadecimal.

FILE1D1 is an example of a file name for a file that contains corrected data for channel
#1. FILE1R5 is a filename for raw data arrays from channel #2. MYFILE2C is an example
of a name for a file that contains a cal set used by channel #2, with 12 arrays of data
(hexadecimal C).

To load data from disk into an 8700-series instrument, there must be a matching
instrument state file to go with the data that is being loaded. Consult the 8700-series
documentation for more information.

Advanced Design System 2011.01 - Using Circuit Simulators

170

 Circuit Remote Simulation
As the name suggests, remote simulation is one in which you want to run the simulation
on a remote machine. In remote simulation, the term server has the same meaning as
host (it means the machine on which you want to run simulation), and the term client has
the same meaning as local computer.

Remote simulation must be set up in Simulation Setup below the Simulate menu in the
schematic window. For a circuit simulation, there are four modes of remote simulation:

ADS Remote Simulation (cktsim)
LSF Remote Simulation (cktsim)
Sun Grid Engine Remote Simulation (cktsim)
Distributed Remote Simulation (cktsim)

The table below lists the differences between the different modes of remote simulation.

Advanced Design System 2011.01 - Using Circuit Simulators

171

 ADS Remote
Simulation

LSF Remote Simulation Sun Grid Engine Remote Simulation Distributed
Remote
Simulation

Management Managed by
ADS.

ADS process
hpeesofemx is
in charge of
communication
between ADS
on the client
and simulation
running on
remote server.

Managed by LSF “bsub” in batch mode. Managed by Sun Grid Engine “qsub” in batch mode. ADS and LSF

ADS EMX
eedeamon
hpeesofemx is
in charge of
communication
between ADS
running on the
client machine
and remote
simulations
running on
remote
servers. LSF is
used to obtain
names of
available
remote
servers.

First ADS
queries LSF for
machines with
best CPU
usage. Then
ADS sends LSF
jobs to start
EMX
eedeamon on
selected
remote
servers.

System
requirements

Manually
starting ADS
EMX
eedeamon (
hpeesofemx)
on the remote
server is
required.(see
Setting Up the
Server
(cktsim) in
ADS Remote
Simulation)

LSF environment needs to be set up properly. Sun Grid Engine environment needs to be set up
properly.

LSF
environment
needs to be
set up
properly.

Setup for ADS
distributed
simulation is
required.(see
Setup
Requirements
(cktsim) in
Distributed
Remote
Simulation)

Platforms All supported
platforms

Linux and Unix only Linux and Unix only Client:
Windows,
Linux and Unix
Server: Linux
and Unix

Simulation
requirements

Circuit
simulation with
restriction, as
specified in
Remote
Simulation
with File
Access.

Circuit simulation with restriction, as specified in
Remote Simulation with File Access.

Circuit simulation with restriction, as specified in
Remote Simulation with File Access.

Circuit
simulation with
restriction, as
specified in
Remote
Simulation
with File
Access.

Simulation
should have a
parameter
sweep on top
of analysis
controller.

Simulation
status

Available in
simulation
status window.

Not available in simulation status window.
It is saved in
<current_wrk>/remoteJobs/jobName/Simulation.log

Not available in simulation status window.
It is saved in
<current_wrk>/remoteJobs/jobName/Simulation.log

Available in
simulation
status window.

DDS display
auto-update

Yes No No Yes

 Remote Simulation with File Access
File access feature includes the following cases:

Advanced Design System 2011.01 - Using Circuit Simulators

172

Accessing a file in any device or model instance like DataAccessComponent, SnP1.
components, etc.
Including another netlist fragment through the NetlistInclude component, or the2.
"#include" statement.

Remote simulations with file access only works when the following conditions are met:

The file or included netlist must be specified with the full path. File access with a1.
relative path is not supported in remote simulations.
The given path must be accessible from the remote server via a properly mounted2.
file system. For example, if a file is given on Windows with a path like "c:\", the
remote simulation will not work on Unix servers.

 ADS Remote Simulation
The remote simulation is managed by ADS EMX eedaemon (process hpeesofemx).
Simulation queuing is not supported in ADS remote simulation. The simulation status is
available in the Simulation status window and DDS display is updated after the simulation
finishes.

ADS remote simulation works on all supported platforms. It works among the following
system pairs:

Client (local machine) Server (remote host)

UNIX or Linux UNIX or Linux
Windows

Windows Unix or Linux

The following flowchart illustrates the steps to perform ADS remote simulation.

Click on the respective block in the flowchart below for further details on the selected topic.

Advanced Design System 2011.01 - Using Circuit Simulators

173

 Setting Up the Server

To prepare a server (remote computer), perform the following steps:

Log in to the remote computer.1.
Set the HPEESOF_DIR, PATH, and DISPLAY environment variables as you normally2.
would when running ADS. For more information, see Managing ADS Licenses
(instalpc).

Note
DISPLAY must be set if you are running ADS Ptolemy simulations with TkPlots in them. This allows
the server to display the TkPlots on the client machine.

Set the TCP communication port (socket address) in the server using one of the3.
following methods. This provides the socket address to the hpremote script.

Important
Before setting a socket address, ensure that the number is not used. NIS (Network Information
Services) is not supported for setting the EMX daemon socket address, and the address you use
must not be used in NIS. To check NIS, use the following command where xxxx is the address:
ypcat services | grep xxxx

Edit the file $HPEESOF_DIR/config/hpeesof.cfg (site wise) or
$HOME/hpeesof/config/hpeesof.cfg (user wise) to set the socket address. Add
the following line:
EEDAEMON_SOCKET = xxxx

where xxxx is the socket address, such as 1537.
Edit the file /etc/services to set the socket address. Add the following line:
eedaemon xxxx/tcp eedaemon

where xxxx is the socket address, such as 1537.
Do not define a socket address, which allows the EMX daemon started by the
hpremote script to use the default socket address of 1537. This method may be
unreliable.

Run the following script on the4.
Unix/Linux server:hpremote -d /tmp/remote_sim.log

Advanced Design System 2011.01 - Using Circuit Simulators

174

Windows server, from an MS-DOS command prompt:
<HPEESOF_DIR>\bin\hpremote -d remote_sim.log

Note
Do not terminate the MS-DOS window that pops up. Doing so will immediately terminate the
daemon as well.

The -d option is for debugging purposes. It allows you to see the screen
messages and save them in the remote_sim.log file for later verification. This
file will be stored in the /tmp directory.
To view the last part of the file on Unix/Linux, use the following command:
tail -f /tmp/remote_sim.log

You may want to automate the startup of the EMX daemon each time the
workstation boots. This can be done through a resource configuration (RC) script
as follows:

HPEESOF_DIR=<your installation directory path>

PATH=$HPEESOF_DIR/bin:$PATH

if [-f $HPEESOF_DIR/bin/hpremote]; then

 $HPEESOF_DIR/bin/hpremote -d /tmp/remote_sim.log & fi

If you run remote simulations on a UNIX/Linux server, and receive an error
message as follows, when running the hpremote script:

[1] + Stopped (tty output) -hpeesofemx-d remote.log &

it may be an indication that you are running from a shell that does not write
messages to tty for a background process (tty gets the terminal name).
In this condition, use the following command in the hpremote script:
hpeesofemx 2>&1 &

You can verify that the hpremote daemon is running by checking the process:
ps -ef | grep hpeesofemx

Note
If another user has already launched the hpremote, then it must not be launched a second time.
Subsequent remote users (you in this situation) can connect to this daemon as well. Make sure that the
HPEESOF_DIR is set correctly for your simulation.

The Server (remote computer) is now ready to run ADS simulations started on a client.

Unfortunately, terminating EMX daemon that is running on the remote server has to be
done manually.

In Windows, go to the Task Manager and end the process hpeesofemx.
In UNIX/Linux, you can find the process using the command ps -ef | grep
hpeesofemx

then kill the process using kill -9 <process ID>

Back to Remote Simulation Flowchart

 Setting Up the Client

Please make sure the configuration file hpeesof.cfg, located in $HPEESOF_DIR/config
(site wise) or $HOME/hpeesof/config (user wise) directory includes:

EEDAEMON_SOCKET = 1537

Again, while this socket is generally not used, you should make sure 1537 does not
appear in the /etc/services file. Also, even though 1537 is the default socket setting within
ADS, best practices involve explicitly adding this line in the hpeesof.cfg file.

A client machine should now be ready to run remote simulation.

Back to Remote Simulation Flowchart

 Selecting the Simulation Mode

To start ADS remote simulation:

Advanced Design System 2011.01 - Using Circuit Simulators

175

In the Schematic view, choose Simulate > Simulation Setup to open the1.
Simulation Setup dialog box.
In the Simulation mode drop-down list, select Remote.2.
Select the Remote tab to set the Job management option to ADS.3.
Type in the Host name (or Host's IP address) or select from Hostname drop-down4.
list.

Back to Remote Simulation Flowchart

 Simulation Hostname List

 Multiple servers may be available on your system. Multiple servers are particularly useful
when you intend to compare circuit simulation results as quickly as possible. Once
multiple servers are set up, they can be accessed by typing in each name at a client
computer, or by generating a listing on a client.

This listing appears when you click the down arrow next to the Hostname field on the
Remote tab. Normally this is a list of one, defaulting to local and no others. However, you
may write a list of hosts into the de_sim.cfg file on a client computer. Edit the
de_sim.cfg file, located in your $HPEESOF_DIR/config directory, or
C:\users\default\hpeesof\config (on PC) or $HOME/hpeesof/config (on UNIX/Linux)
directory, to include the following line:

SIMULATION_HOST_LIST=[hostname1] [hostname2]...

 where each [hostname] must be separated by a single space. After making this edit, start
ADS.

From the Schematic window, choose Simulate > Simulation Setup.1.
In Simulation Setup dialog box, click the drop-down to the right of the Hostname2.
field on the Remote tab.
Highlight the host you want, and click the Simulate button.3.

When a hostname is added to the Hostname field, it is appended to
SIMULATION_HOST_LIST too.

Back to Remote Simulation Flowchart

 Simulator Server Error

 For either a PC or UNIX/Linux server, if you get the following error message when
running Remote Simulation on the client:

(send_server_command) OPEN_SIMULATOR

server error

The EMX daemon may not be running on the Server. Check the Server:

PC Try using the command hpremote -d <filename > to start the daemon. If a failure
re-occurs, you can check the log file <filename> saved in the $HPEESOF_DIR\bin
directory to search for causes. On the client side, try typing in the Server's IP
address instead of its machine name in the Remote Simulation Host field of the box
that pops up from Simulate > Simulation Setup.
UNIX/Linux Please be sure you edited and ran hpremote as described above.
Remember that adding EEDAEMON_SOCKET = 1537 to hpeesof.cfg is recommended
before running hpremote.
PC and UNIX/Linux If you are sure hpeesofemx is running on the server, it may be
listening to a different socket address than the client seeks. Please verify that both
client and server computers are using the same TCP socket. It is recommended to
use socket 1537, the default setting in ADS sought by clients.

Back to Remote Simulation Flowchart

 LSF Remote Simulation

Note
This feature is supported only on Linux and UNIX.

Advanced Design System 2011.01 - Using Circuit Simulators

176

The following flowchart illustrates the steps to perform LSF remote simulation.

Click on the respective block in the flowchart below for further details on the selected topic.

 LSF Setup Requirements

LSF environment needs to be set up properly (please refer to, LSF documentation
http://www.platform.com). To verify it, you can run a LSF command like lshosts as a
test. lshosts should print a list of available LSF-managed hosts.

 Supported LSF Software

Supported LSF software is LSF Standard Edition 6.2
Where to get LSF software and documentation: http://www.platform.com

Back to Remote Simulation Flowchart

 Selecting the Simulation Mode

To start a LSF remote simulation:

In the Schematic window, choose Simulate > Simulation Setup to open the1.
Simulation Setup dialog box.
In the Simulation mode drop-down list, select Remote.2.
Select the Remote tab to set the Job management option to LSF.3.
If LSF – N/A is listed in Job Management, that means LSF service is not available.

The remote simulation runs in batch mode and the job is scheduled by LSF. You no longer
need to wait for the job to finish, before you perform another simulation. No simulation
status is available in the Simulation status window. Simulation status is saved in
<CUR_wrk>/remoteJobs/jobName/Simulation.log.
To interact with the simulation, use the following LSF commands on the command prompt
from where you launched ADS:

bhist or bjobs - query the simulation status
bkill - kills a scheduled job

Back to Remote Simulation Flowchart

 Setting Up LSF Remote Simulation

Before the simulation starts, you must provide additional job setup information for LSF as

http://www.platform.com
http://www.platform.com
http://www.platform.com
http://www.platform.com

Advanced Design System 2011.01 - Using Circuit Simulators

177

described in the following table:

Setup
Dialog
Name

Description

Job name This is the remote job name. The name is used as the dataset name which is saved under the
directory <CUR_wrk>/data. The name is also used to create a directory under
<CUR_wrk>/remoteJobs and the new directory will contain the simulation netlist and log files.
If the job name conflicts with an existing job name, a warning message appears asking
whether you want to overwrite simulation results from a previous simulation. To check the
status of the job, use the LSF command bjos from the command line.

LSF queue The pulldown menu lists all of the LSF queues available to you. If it is unspecified, the default
queue is used. Please contact your system administrator if you are not sure which queue to
use.

Details This includes information about the selected queue from the LSF queue pulldown menu.

Refresh Querying the LSF system can be slow. ADS saves LSF queue information which might be out of
date. Use Refresh to have ADS update the LSF queue information.

LSF email
address

If you would like e-mail notification when the simulation starts and when simulation is finished,
enable this option and provide LSF with an email address. If the LSF cluster you are using does
not allow an e-mail process as your local computer, you should give a fully qualified address. It
is recommended to enable email notification.

LSF
requirement

You can set LSF "-R" requirement options that constrain a set of hosts that can be used for an
LSF simulation. The requirement string must be formatted according to LSF rules.

Retry if host
fails

LSF will attempt to rerun the simulation automatically if the host on which it is running fails.

Back to Remote Simulation Flowchart

 Sun Grid Engine Remote Simulation
The following flowchart illustrates the steps to perform SGE remote simulation.

Click on the respective block in the flowchart below for further details on the selected topic.

 Automount Configuration for Sun Grid Engine

Complete the following configuration to use Sun Grid Engine with ADS:

Add the following line to $HOME/hpeesof/config/hpeesofsess.cfg:1.

AUTOMOUNT_MAPPINGS_PATH =

.:$HOME/hpeesof/sess:$HPEESOF_DIR/sess:$HPEESOF_DIR/custom/sess

Create the file $HOME/hpeesof/sess/automount_mappings.cfg, and put automount2.
mapping information in the file. For example,
if /a/new/... is an automatically-created path for /gfs/...,
add the following information: /a/new|/gfs

Back to Remote Simulation Flowchart

 Selecting the Simulation Mode

Advanced Design System 2011.01 - Using Circuit Simulators

178

To start a Sun Grid Engine(SGE) remote simulation:

In the Schematic window, choose Simulate > Simulation Setup to open the1.
Simulation Setup dialog box.
In the Simulation mode drop-down list, select Remote.2.
Select the Remote tab to set the Job management option to Sun Grid Engine.3.
If Sun Grid Engine – N/A is listed in Job Management, that means Sun Grid Engine
service is not available.

The remote simulation runs in batch mode and the job is scheduled by Sun Grid Engine.
You no longer need to wait for the job to finish, before you perform another simulation. No
simulation status is available in the Simulation status window. Simulation status is saved
in <CUR_wrk>/remoteJobs/jobName/Simulation.log.
To interact with the simulation, use the following Sun Grid Engine commands on the
command prompt from where you launched ADS:

qstat - query the simulation status
qdel - kills a scheduled job

Back to Remote Simulation Flowchart

 Setting Up Sun Grid Engine Remote Simulation

Before the simulation starts, you must provide additional job setup information for Sun
Grid Engine described in the following table:

Setup Dialog
Name

Description

Job name This is the remote job name. The name is used as the dataset name which is saved under the
directory <CUR_wrk>/data. The name is also used to create a directory under
<CUR_wrk>/remoteJobs and the new directory will contain the simulation netlist and log files.
If the job name conflicts with an existing job name, a warning message appears asking
whether you want to overwrite simulation results from a previous simulation. To check the
status of the job, use the Sun Grid Engine command qstat from the command line.

Sun Grid
Engine queue

The pulldown menu lists all of the Sun Grid Engine queues available to you. If it is unspecified,
the default queue is used. Please contact your system administrator if you are not sure which
queue to use.

Details This includes information about the selected queue from Sun Grid Engine queue pulldown
menu.

Refresh Querying the Sun Grid Engine system can be slow. ADS saves Sun Grid Engine queue
information which might be out of date. Use Refresh to have ADS update the Sun Grid Engine
queue information.

Sun Grid
Engine email
address

If you would like e-mail notification when the simulation starts and when the simulation is
finished, enable this option and provide Sun Grid Engine with an email address. If the Sun
Grid Engine cluster you are using does not allow e-mail process as your local computer, you
should give a fully qualified address. It is recommended to enable email notification.

Sun Grid
Engine
requirement

You can set requirements that constrain a set of hosts that can be used for a Sun Grid Engine
simulation. The requirement string must be formatted according to Sun Grid Engine rules.

Retry if host
fails

Sun Grid Engine will attempt to rerun the simulation automatically if the host on which it is
running fails.

Back to Remote Simulation Flowchart

 Distributed Remote Simulation
Distributed remote simulation is designed for:

A simulation with a parameter sweep where the simulation for each sweep point
takes a long time to run.
To break up a signal processing BER simulation over multiple hosts.
ADS uses LSF to locate available machines from an LSF cluster. For a distributed
sweep, LSF distributes the sweep points to those machines. Simulations run in
parallel on the individual sweep points on each machine. ADS merges all simulation
results into the final, single dataset on the local machine. From a user's perspective,
this is similar to running a single remote simulation.

The Distributed tab is enabled only when the Simulation mode is set to Distributed and
LSF service is available. LSF service is required and it must be set up properly on both
client and servers.

Distributed remote simulation works on following system pairs:

Advanced Design System 2011.01 - Using Circuit Simulators

179

Client (local machine) Server (remote host)

UNIX or Linux UNIX or Linux

Windows Unix or Linux

The following flowchart illustrates the steps to perform Distributed remote simulation.

Click on the respective block in the flowchart below for further details on the selected topic.

 Setup Requirements

For UNIX and Linux, all users who will be using ADS and LSF must have a common,
shared, $HOME directory, on all systems. Not only the same $HOME directory name,
but the same directory must be used (typically, the same directory is mounted via
NFS in the same location on all systems). In other words, if a file in a user's $HOME
directory is changed on one system, that change must be immediately reflected on
every other system.
At least 100 MB of free disk space must be available on each system, for use by
temporary simulation data (the more, the better).
The disk space should be on a local disk. While network disks can be used, a
significant simulation performance degradation can be seen if network disks are
used. For best performance, the free disk space should be on a disk local to each
system. This statement is not in conflict with the requirement about $HOME
directories. $HOME directories must be shared (and, therefore, be on a network
drive), but temporary disk space should be on a local disk.

Back to Distributed Remote Simulation Flowchart

The following steps are required for distributed simulations:

Advanced Design System 2011.01 - Using Circuit Simulators

180

 Preliminary Setup

Follow the LSF instructions to set up LSF at your site. Note that LSF servers must be1.
running on every system that you want to use as a possible simulation host. LSF
clients must also be running on every system on which ADS will be running. If LSF is
not running, ADS will not be able to locate machine list to run the simulation on.
Install ADS on every UNIX or Linux system that you want to use as a possible LSF2.
remote simulation host, and install ADS into the same location on each host (or use a
symlink at the same location to point to where you actually installed ADS).
Alternatively, you can install ADS on one or more centralized servers, and have each
UNIX or Linux system access ADS via NFS and symlinks.
All systems must be able to access ADS using the same directory path. Use symlinks,
if necessary, to meet this requirement.

Back to Distributed Remote Simulation Flowchart

 Setting Up Scripts on Each LSF Remote Host

Scripts on each LSF remote simulation host must be configured (if ADS is installed on
centralized servers, the following needs to be done on each centralized server). Do the
following for each of the remote simulation host:

Copy the file, $HPEESOF_DIR/sess/remote-sim-server, to1.
$HPEESOF_DIR/custom/config/remote-sim-server (this destination file should not
already exist). Example:

cd $HPEESOF_DIR/sess

cp remote-sim-server ../custom/config/remote-sim-server

The newly copied file, $HPEESOF_DIR/custom/config/remote-sim-server, is a plain shell
script. Edit this file and appropriately change the settings of the HPEESOF_DIR environment
variable to match the correct HPEESOF_DIR value for the current host.
You must explicitly set the value for HPEESOF_DIR. You cannot rely upon the
HPEESOF_DIR environment variable being properly set when this script is run due to the
way in which ADS executes this script.
(If the HPEESOF_DIR variable is set, it will have the value of HPEESOF_DIR for the system
on which the ADS graphical user interface is running. This may not be the correct value
for HPEESOF_DIR on the remote simulation host, which is the host on which this script will
be run.)
In this script, the default value for HPEESOF_DIR is /dev/null, which is clearly incorrect;
this value was chosen to emphasize the fact that this script must be edited.
Note that this script allows different platforms (Linux and Solaris) to have different values
for HPEESOF_DIR; make sure you edit the correct occurrence of HPEESOF_DIR for the
current platform.
You must also change the first line of the newly copied file from #! /bin/sh to #!
/usr/bin/sh.
Make sure that the newly copied file has execute permission, for example:
chmod 555 $HPEESOF_DIR/custom/config/remote-sim-server

Back to Distributed Remote Simulation Flowchart

 Editing ADS Configuration File (hpeesof.cfg)

Edit the file $HPEESOF_DIR/custom/config/hpeesof.cfg(site wise) or
$HOME/hpeesof/config/hpeesof.cfg(user wise) to set the socket address. Add the
following line:

EEDAEMON_SOCKET = xxxx

where xxxx is the socket address, such as 1537

Back to Distributed Remote Simulation Flowchart

 Editing ADS Configuration File (hpeesofsess.cfg)

The configuration can be controlled on a system-wide or per-user basis. System-wide
configurations affect all users on a system, but are simple to configure; only one file needs
to be edited. Per-user configurations affect only a single user, and take precedence over
any system-wide configurations; however, you'll have to configure a file for each user.

Advanced Design System 2011.01 - Using Circuit Simulators

181

You'll have to decide which is best for you. However, most users will be satisfied with a
system-wide configuration.

To set a system-wide configuration, edit (create) the following file:

$HPEESOF_DIR/custom/config/hpeesofsess.cfg

To set the configuration for a single user, edit (create) the following file:

$HOME/hpeesof/config/hpeesofsess.cfg

In the hpeesofsess.cfg configuration file, edit the following ADS environment variables:

LSF_MAX_HOSTS: maximum number of LSF host to use.1.
By default, LSF-controlled simulations will use all available LSF hosts for remote
simulations, and every available host will be used for each simulation. For some sites,
there may be issues with this:

This assumes that ADS is installed/available on all LSF hosts. Some sites may
have ADS installed/available on only a subset of LSF hosts.
To restrict simulations to a subset of LSF hosts, you must create a list of hosts
to which LSF simulations may be submitted. See step 4 in this section, below,
for instructions on how to set the LSF_HOSTFILE variable.
Some sites may want to limit the number of hosts that a single simulation can
use.
To limit the number of LSF hosts that a single LSF simulation will use, you must
set the variable LSF_MAX_HOSTS. Example:
LSF_MAX_HOSTS = 17

This will impose a limit of 17 hosts when performing a single LSF simulation.
Note that this limit applies to each user's simulation. For example, if two users
have a limit of 17, and both perform LSF-controlled simulations, the maximum
number of systems used is 34, and not 17.
If you need to limit both the hosts and the number of hosts, both methods can
be used simultaneously.

REMOTE_SIM_SERVER: location of the remote-sim-server script.2.
You must tell ADS the location of the remote-sim-server script (from the section on
scripts, above) on the remote systems. You do this by setting the variable
REMOTE_SIM_SERVER.
Example: If you installed ADS on the remote systems such that
HPEESOF_DIR=/ADS2011_01, you would add this line to the configuration file
(without leading spaces):

REMOTE_SIM_SERVER = /ADS2011_01/custom/config/remote-sim-server

Do not use any environment variables when setting this variable; you must use the
actual, absolute path name. In other words, do not use a line such as:

REMOTE_SIM_SERVER = $HPEESOF_DIR/custom/config/remote-sim-server

This will not work, and will only cause problems.
LSF_TMPDIR: temporary directory on a remote host.3.
First, determine a location for a temporary work directory. The default is /tmp. You
can use /tmp or /var/tmp, or some other convenient directory. However, you must
have enough disk space at this location to hold the data for each LSF-managed
intermediate simulation. Be sure this is a local disk with at least 100 MB of free disk
space. If you plan to perform large simulations, you'll need more disk space (the
more, the better).
While you do not have to use the same directory location on each LSF remote
simulation host. However, using the same directory location (using symlinks if
necessary) will greatly simplify configuration in the following steps.
If you did not choose /tmp as the temporary work directory (for all systems), you will
have to tell ADS about this. If all systems will be using /tmp, you can skip this step.
If you want to specify the same temporary work directory path for all remote
simulation hosts, you do so by placing the following line into the hpeesofsess.cfg
file:

LSF_TMPDIR = /my/tmp/dir

Replace /my/tmp/dir with the desired name of the temporary work directory. By
setting LSF_TMPDIR, you are specifying that this directory path is to be used as the

Advanced Design System 2011.01 - Using Circuit Simulators

182

default temporary work directory on all remote simulation hosts.
If all systems will be using the same path specified by LSF_TMPDIR, you can skip the
rest of this step.
LSF_HOSTFILE: LSF host file name (see, Editing User-defined LSF Host File)4.
If you need to restrict LSF simulations to a subset of LSF hosts, or if you want to
specify different temporary work directory names for some or all of the remote
simulation hosts, you must create a file that lists each remote simulation host and
the corresponding temporary work directory (if different from the default). However,
if you create this file, note that only the systems listed in this file will be used by LSF-
controlled simulations.
This file is specified using the variable LSF_HOSTFILE.
Example:

LSF_HOSTFILE = /my/path/to/some/hostfile

Back to Distributed Remote Simulation Flowchart

 Editing User-defined LSF Host File

This file allows you to restrict LSF simulation to a subset of LSF hosts and customize
temporary work directory for each host. It consists of text lines of the form:
<system_name> [<temporary_directory_name>]

Where:

<system_name> is the name of a remote simulation host, including domain
name. In other words, the name must be a fully qualified domain name (FQDN).
Note that all systems must be within your local domain (the same domain as the
system from which ADS is run). You cannot specify systems that are not within
your local domain. If you do, ADS may not work properly.
<temporary_directory_name> is the optional name of the temporary directory
to use on the remote simulation host. If this directory is not specified, the value
of LSF_TMPDIR will be used, or, if LSF_TMPDIR is not set, /tmp will be used.

Example (assuming that your domain name is "qptzx.com"):

system1.qptzx.com /tmp

system2.qptzx.com /disk2/tmp

system3.qptzx.com

system4.qptzx.com /some/disk/foo

Note that system3 does not have an explicit temporary directory; since one is not
specified, the value of LSF_TMPDIR will be used or, if LSF_TMPDIR is not set, /tmp will be
used. As only four systems are specified here, the maximum number of LSF-controlled
simulations is four (even though there may be more LSF-managed hosts available).
As mentioned above, only the systems listed in this file will be used for LSF-controlled
simulations, and so you must ensure that all systems that you want to use are listed here.
Also, make sure that all temporary working directories are writable.
The following is an example of an lsf_hosts.cfg file:

#this is my LSF control file

#Date:8/12/2003

#sirpoh will use /tmp

server.yourcompany.com /tmp

#no directory specification => jane will use * => /tmp/parallel.}}

jane.server.yourcompany.com

#joe will use /users/poh/tmp

joe.server.yourcompany.com /users/poh/tmp

#generic temporary directory #specification on a host line

* /tmp/parallel

Back to Distributed Remote Simulation Flowchart

 Selecting the Simulation Mode

To start Distributed Remote Simulation:

In the Schematic view, choose Simulate > Simulation Setup to open the1.
Simulation Setup dialog box.
In the Simulation mode drop-down list, select Distributed.2.
Select the Distributed tab, to setup the sweep variables. For details, see Setting Up3.

Advanced Design System 2011.01 - Using Circuit Simulators

183

Sweeps.

Back to Distributed Remote Simulation Flowchart

 Setting Up Sweeps

Distributed remote simulation is useful for a simulation with sweeps. Specify outermost
sweep in distributed simulation setup dialog box.

Setup
Dialog
Name

Description

Sweep
Variable

Select the variable name to be swept. After selecting the Sweep Variable, enter values for Start,
Stop, and Step.

Sweep
Setup

Start The start value of the sweep variable.

Stop The stop value of the sweep variable.

Step The step value of the sweep variable.

Parallel BER Select this option to enable parallel BER simulation when you need to break up a signal
processing BER simulation over multiple hosts. This feature is available only when a BER
simulation is using any of these Sink components: berMC (sinks), berMC4 (sinks), or BER_FER
(sinks).

Parallel
BER

Number of
Partitions

This is the number of hosts used to run simulations in parallel.

Back to Distributed Remote Simulation Flowchart

Advanced Design System 2011.01 - Using Circuit Simulators

184

 An ADS Simulation Example
This topic is a detailed simulation example for ADS. The circuit is a simple BJT and the
simulation is set up to calculate the DC operating point. The simulation process is
described here in detail, and this process can be applied to more complex circuits and
simulations.

Before continuing with this topic, you should be familiar with the other topics in Using
Circuit Simulators (cktsim), in Schematic Capture and Layout (usrguide), and in the
Advanced Design System Quick Start (adstour).

The DC_OP_POINT design used here is located in the Examples directory under
MW_Ckts/LNA_wrk . Details on working with example workspaces can be found in
Schematic Capture and Layout (usrguide).

Working through this example consists of these tasks:

Placing Circuit Sources
Specifying Points for Collecting Data
Selecting a Simulation Type
Selecting a Sweep Type and Plan
Setting Simulation Options
Modifying the Simulation Setup
Starting the Simulation
Displaying Simulation Data

 Placing Circuit Sources
In many cases your circuit will contain sources. In this example, you need to select a
voltage source that is appropriate for a DC simulation:

From the Component Palette List, choose Sources-Time Domain .1.
Select V_DC (DC Voltage Source) and place this component in the Schematic2.
window.
Set the DC voltage (Vdc) to 3.0 V .3.

 Ensuring Sources are Connected Properly

You must ensure that the sources are connected properly to the circuit. You can do this
two ways:

Wire the source directly to your circuit.
Use node names (Insert > Wire/Pin Label) to define connections. By labeling the
end of the source and a point in the circuit, the source then behaves as if connected
physically to that point of the circuit. For example, named connections can be used
for Vcc, Vb, and Ve.

Advanced Design System 2011.01 - Using Circuit Simulators

185

 If you are wiring components, the color of the pin changes when a successful connection
is established. Wires that are simply overlaid on intervening nodes will not be connected
to those nodes, and clicking on the intervening nodes after the end node is wired does not
ensure that the intervening nodes are connected properly.

In addition, the endpoints of dangling wires (wires that are connected at one end only)
can be moved but not edited. To move an endpoint, choose Edit > Move > Move Wire
Endpoint . When crosshairs appear, select the open endpoint and move it; the wire will
move with it. It is also possible, using standard copy and move commands, to move and
copy dangling wires and networks of wires.

To label and share a source:

Choose Insert > Wire/Pin Label and a dialog box appears.1.
Enter a name for the node (for example, Vcc).2.
Click the pin of the source you want to label (for example, the positive side of V_DC).3.
The label Vcc appears at that node.
Next click the pin of a node to which you want Vcc to apply (for example, one end of4.
a resistor). The resistor node is also labeled Vcc. (Note that you must click the
component pin, not a wire between components.)

Note
 To delete a named connection, choose Edit > Wire/Pin Label > Remove Wire/Pin Label. When
crosshairs appear, click the pin whose connection name you want to remove.

Edit any parameters of the source as needed.5.

 Specifying Points for Collecting Data
 You must specify the points in the circuit where voltage and current values will be
collected and saved in the dataset:

To identify points where you want voltages to be taken, use node names (Insert >
Wire/Pin Label) or global nodes (Insert > Global Node). For circuit nodes that are
labeled this way, voltages will be calculated during the simulation and saved to the
dataset.
For collecting current values, insert current probes (I_Probe) in your circuit at points
of interest. Current probes are found on the Probe Components palette.
Some components, such as the DC voltage source (V_DC) used in this example,
include a SaveCurrent parameter. If this is set to yes , the current flowing through
this component will be saved to the data set.

To help identify the data collected by a probe or source, you might want to change the
default Instance Name to something more meaningful. For example, you can name a DC
voltage source Vsupply. The current through that source will appear in the dataset as
Vsupply.i .

Note
Current probes (I_Probe components) must be placed so that the arrow on the probe points in the
direction of (positive) current flow. To flip a probe horizontally, choose Edit > Rotate/Mirror > Mirror About
Y .

In general, voltage and current data is in phasor representation, so the voltage values at named nodes are
peak voltage.

The process for labeling nodes is described in Ensuring Sources are Connected Properly.

To insert a current probe:

Select the Probe Components palette.1.
Select the I_Probe component and place it at the desired point in your schematic.2.
(You may need to move components or rewire to do this.) Edit the probe component
and change the Instance Name to something that suggests its purpose in the circuit.

Advanced Design System 2011.01 - Using Circuit Simulators

186

For details on selectively sending data to the dataset, refer to Selectively Saving and
Controlling Simulation Data (cktsim).

 Selecting a Simulation Type
There are a variety of simulation methods to choose from. To use a particular simulator,
you must have purchased a license for it. If you do not have a license, a message will
appear when you attempt to run the simulator. This may also happen if you share licenses
that are already in use.

Each simulator has its own palette, which can be selected from the Component Palette
List. Details for using each simulator are described in later topics.

To add a DC simulation component (for this example):

Select the Simulation-DC palette.1.
Select and place the DC component on your schematic.2.

 Editing Simulation Parameters

There are two ways to edit simulation parameters:

You can edit parameters directly on the schematic. Click somewhere within the
parameter value to invoke the on-screen editor, and change the value as desired.
Press Return to enter data and go to the next entry. Note that by default, not all
parameters are displayed on the schematic; to view/edit additional parameters, use
the dialog box, as described next.
You can edit parameters within the dialog box. To open the dialog box, either double-
click the simulation component, or select it and choose Edit > Component > Edit
Component Parameters . You can also bring up the dialog box using the Edit

Component Parameters icon on the toolbar.

Note
For many simulation options, the default parameters should provide satisfactory results and will not need
editing.

 You may find it useful to display (on the schematic) the options you have selected, to
remind you of the parameters governing a simulation.

To display additional parameters on the schematic:

Advanced Design System 2011.01 - Using Circuit Simulators

187

Select the Display tab.1.
Select each parameter you want to appear and click OK.2.

To exercise certain simulation options, you must first display them on the schematic, then
set them equal to the desired value. For example, to send a defined power parameter
RF_power to the dataset following a simulation, use the Output tab of the DC Operating
Point dialog box. Refer to the section Selectively Saving and Controlling Simulation Data
(cktsim).

 Selecting a Sweep Type and Plan
 The Sweep tab enables you to identify the parameter that you want to sweep, and then
specify the sweep type. You can sweep over:

A single point
A linear range
A logarithmic range

After you select the sweep type, you can then specify the sweep range.

You can also select a sweep plan . A sweep plan enables you to specify a sweep once and
then use these settings in other places. For more information, refer to Parameter Sweeps
and Sweep Plans (cktsim). Note that for some simulators, these settings are found on the
Freq tab.

To set the sweep values for this example:

Double-click the DC component to edit it.1.
Set the following parameters as shown here:2.

Parameter to sweep = VBE
Start = 0.6
Stop = 0.85
Step size = .002
Num. of pts. = 126

If using the Load Sharing Facility (LSF) utility, you can break up a sweep and run the
simulation on multiple machines, in parallel, by selecting Parallel Hosts as the Simulation
Mode (Simulate > Simulation Setup). Individual sweep points are run on each machine
and results combined into a single dataset on the local machine. For details on setting up
remote and local machines for remote processing, see the topic Using Remote Simulation
in the installation documentation for your platform.

 Setting Simulation Options
An Options component can be used with any simulation. The most common use of the
Options component is to set the simulation temperature, but it also enables you to specify
settings for convergence tolerances, warnings and other advanced options. (For this
example, an Options component is not used.)

To add an Options component:

Select any simulation palette.1.
Select and place a simulation Options component and double-click to edit it. You can2.
set general simulation options such as temperature, DC convergence tolerances,
warnings, and other settings.

For more information about each field, click the Help button at the bottom of the Options
Component dialog box.

 Modifying the Simulation Setup
Additional simulation setup options include:

Advanced Design System 2011.01 - Using Circuit Simulators

188

Specifying a name for the dataset to which simulation data will be saved
Automatically displaying data when the simulation is finished
Selecting a different machine on which to run the simulation

To specify simulation setup options:

From the Schematic window, choose Simulate > Simulation Setup . A Simulation1.
Setup dialog box appears:

The data calculated during a simulation is saved in a dataset. The default dataset1.
name is the same as the cell being simulated. Change the name as desired.
By default, the Data Display will automatically launch when the simulation is2.
complete. If the simulation results were displayed before, the same window will open
if you specify its name in the Data Display field.
If you use remote simulation hosts, you can specify a machine other than the local3.
one for running the simulation. For more information on how to set up remote
machines, see the installation documentation for your platform.

 Starting the Simulation
There are several ways to launch a simulation:

Press F7 on the keyboard.
Click the Simulate icon on the toolbar.
Choose Simulate > Simulate from the Schematic window.
Choose Simulate from the Setup dialog box while it is open.

When the simulation begins, a status and error message window appears. When the
simulation is complete, the line Simulation finished . at the bottom of the window
indicates that the simulation has run successfully. The location of the dataset where the
simulation data is saved is also noted.

 Displaying Simulation Data
 You will typically want to view most of your results in a Data Display, however you also
have the option to view DC results on the schematic and view lists of device operating
point details. While it is not very useful in this example-given that the DC results are
reported only for the last point in a sweep – it illustrates an important feature.

 Viewing the DC Solution

Advanced Design System 2011.01 - Using Circuit Simulators

189

Choose Simulate > Annotate DC Solution . DC voltages and currents appear at1.
the pins of all the active devices and lumped elements, as shown below.

Note
Current is defined as positive if flowing into a device, so +13.5 mA is flowing from the emitter to
ground.

Note
To clear the annotations, choose Simulate > Clear DC Annotation from the main menu. You will
have to resimulate to annotate again.

 Viewing the Detailed Device Operating Point

 In the same Schematic window, choose Simulate > Detailed Device Operating1.
Point . Crosshairs appear.
Place the crosshairs over a transistor and click. A detailed DC operating point listing2.
appears.
As you select other devices in a circuit, the DC operating point data for additional3.
devices is added to the list.

For more information about the parameters that are displayed in the list, refer to the
documentation for the specified component.

 Viewing the Brief Device Operating Point

To view a subset of the above information that covers the most common parameters,
choose Simulate > Brief Device Operating Point and select a device. The details are similar
to those in the detailed list, but this list contains fewer parameters.

Advanced Design System 2011.01 - Using Circuit Simulators

190

For details about the data that appears in the list, refer to the selected component's
documentation.

 Viewing More Results in the Data Display

The remainder of the simulations results can be viewed using the Data Display. For
complete details on how to use the Data Display, refer to Data Display (data) and to the
Advanced Design System Quick Start (adstour). The results of this simulation are in
DC_op_point.dds. In this example, collector current versus Vbe at Probe1 is displayed.

There are various options for plotting and scaling data. To edit general plot characteristics,
select the Plot Options tab. This allows you to enter a title and axis label. It also allows
you to deselect Auto Scale and enter a scale that zooms in on a range of interest. You can
also choose between linear and log scales here, and select grid characteristics.

To edit a trace before placing it (unless you have selected the List plot type), select the
parameter under Traces, then click Trace Options . Select the Trace Type , Trace Options ,
and Trace Expressions tabs to select, for example, trace patterns, trace colors, and fonts
for labels, as well as to edit mathematical expressions for display.

Advanced Design System 2011.01 - Using Circuit Simulators

191

 MATLAB Output
In ADS, you can save the results of the certain analysis into the Matlab binary format.
Simply place the MatlabOutput component in the schematic, specify the matlab file
name and the quantities you want to save. The simulator will save the results produced by
these analyses into that file. This component also gives you the capability to filter the data
you want to save either by using the analyses that produced it or a combination of wild-
cards to specify the output quantities. The supported analyses are:

Harmonic Balance & Circuit Envelope
DC
AC
S-Parameter
Transient

Library: Simulation-HB > MatlabOutput

Setup Dialog
Name

Parameter
Name

Description

FileName FileName The name of the matlab output file. Note that if a path is not given the
file is saved in the data directory of the working workspace.

Analysis Analysis The analysis to write the data from. You can either specify 'All' which
is the default or select only a specific analysis type.

UseCustomControl UseCustomControl This is a boolean flag to indicate whether the wild-card expression
specified using the 'FilterExpression' parameter should be used to filter
the data.

FilterExpression FilterExpression A semi-colon separated wild-card expression used to filter the data.
There are two wild-card operators that are supported. The asterisk '*'
 operator which matches one or more characters and '?' operator
which matches any one character. For example the expression 'X?.V*'
will match 'X1.Vout' but will not match 'X12.Vout'.

 Matlab output structure
When you load the produced matlab file in matlab, you will see a single structure with the
name of the ADS design. This structure will contain the following members:

Member name Type Description

name string The name of the dataset.

date string The local time the data was produced.

dataBlocks array of structs (DataBlock) An array of structure containing the data for each
analysis.

 DataBlock Structure

This DataBlock structure will contain the following members:

Member
name

Type Description

name string The full name of the analysis that produced the data.

type string The type of analysis. e.g. HB for harmonic balance.

sweeps cell of strings A cell containing the names of the swept variables. If there are no sweeps
available then this cell will have one of it's dimension set to 0.

independent string The name of the independent variable. For example for AC analysis this will be
'freq' and similarly for transient analysis this will be 'time'.

dependents cell of string A cell containing the names of the dependent variables.

data array of
structs (Data)

An array of structure containing the raw numeric data for each sweep point.

 Data Structure

This Data structure will contain the following members:

Advanced Design System 2011.01 - Using Circuit Simulators

192

Member
name

Type Description

sweep cell of numeric
data

A cell containing the values of the sweep variables.

independent vector of
numeric data

A vector containing the values of the independent data.

dependents matrix of
numeric data

A matrix containing the values of the dependent data. The row index
corresponds to the dependent variable index.

Advanced Design System 2011.01 - Using Circuit Simulators

193

 Preparing a Circuit for Simulation in
ADS
 This topic describes a variety of items that can be added to an ADS schematic to prepare
it for circuit simulation. You should be familiar with this process and with working in
workspaces before continuing here.

The process for creating a schematic-selecting and placing components, editing
component parameters, and wiring-is described in the Schematic Capture and Layout
(usrguide) documentation and in the Advanced Design System Quick Start (adstour).

Refer to the following topics for details on using simulation-specific items:

Using Current Probes describes how to specify the points in a circuit where you can
measure and save current values.
Naming Nodes describes how to specify the circuit nodes where you can measure and
save voltages.
Using NodeSet and NodeSetByName Components describes how to apply best guess
voltage and resistance values at points in a circuit to set starting DC values.
Highlighting Nodes describes how to highlight nodes to quickly locate a point in a
circuit.
Using Constants, Variables, and Functions shows how to use variables and equations
to assign values to parameters.
Applying Measurements shows how to use pre-defined measurements in a schematic,
which are evaluated during a simulation and whose results are saved to view in the
Data Display.
Using Simulation Templates shows how to use predefined circuit and simulation
setups to simplify creating your design.
Using Simulation Instrument Components shows how to simplify the simulation
process by connecting your design to components that represent instruments and run
a simulation.

 Using Current Probes
 Current probes are added to a schematic to collect current data at that point in the
circuit. You can place as many probes as you want in a schematic. Current probes are
found on the Probe Components palette.

Current probes have parameters that you may want to edit, but it is not necessary. You
may want to rename the probe to something meaningful, since the name is used to name
the data collected with the probe.

Note
Current probes (I_Probe components) must be placed so that the arrow on the probe points in the
direction of (positive) current flow. To flip a probe horizontally, choose Edit > Mirror About Y.

 Naming Nodes
To collect voltage data at nodes of interest, you label the nodes on the schematic.

There are two types of nodes: global nodes and named nodes.

By placing a GlobalNode component on a sub-level or top-level schematic of a design (
Insert > Global Node), you can select and edit the name of a node that will maintain
the same identity throughout the entire hierarchy of designs. This means the nodes with
the same name as the global node name in other designs are all electrically connected.
This facilitates the interconnection of boards, IC chips, and connectors.

A named node can be applied to any schematic, but it is specific to that schematic only.

To specify a global node:

Advanced Design System 2011.01 - Using Circuit Simulators

194

Choose Insert > Global Node and place the component on the schematic. Double-1.
click to display the dialog box for entering a name.
Type a name in the Enter global node name field. Click Add. On this design and2.
lower-level designs, it will be considered the same node.
To make an existing named node a global node, select it from Node Name List and3.
click Add.

To name a node:

Choose Insert > Wire/Pin Label.1.
In the dialog box appears, type the desired name and click the node on the2.
schematic that you want to associate with that name.

Note
In general, voltage and current data is in phasor representation, so the voltage values at named
nodes are peak voltage.

You can repeat this for other nodes, or click Done to dismiss the dialog box.3.

Note
By placing an exclamation mark (!) at the end of node name, it becomes a global node for
compatibility with Cadence formats. This should be used only if Cadence compatibility is required.

 Using NodeSet and NodeSetByName Components

 The following sections provide details on the components NodeSet and NodeSetByName,
which are available in all simulation palettes.

 Using NodeSet or NodeSetByName to Facilitate a Simulation

By placing a NodeSet or NodeSetByName component at strategic places in a circuit, you
can instruct the DC simulator to begin its analysis at a given best-guess voltage. It is also
possible to enter values for connection resistance.

These node set components can be used in any analysis, but are especially useful for:

Circuits that are bi-stable, such as flip-flops or ring oscillators, to force it to a known
high or low state rather than letting the DC solver find the meta-stable state halfway
between high and low.
Circuits that are isolated from DC by blocking capacitors.

NodeSet and NodeSetByName work in a two-stage process. In the first stage, these
elements attach the specified voltage source with a series resistor to the specified node(s)
to force a value. A DC solution for the entire circuit is then calculated. In the second
stage, the forcing source and resistor are removed and the DC solution is refined, using
the previous DC solution as an initial guess.

If you choose to use a NodeSetByName component, you can specify a name to facilitate
the retrieval of voltage data in the dataset.

Note that if you specify both a DC Initial Guess File and a nodeset component, the former
takes precedence.

 NodeSet Fields

Following are details on the fields in the dialog box for the NodeSet component.

Instance Name Displays and edits the name of the component.

Select Parameter Selects a voltage or resistance for editing. V (volts) is an estimated
initial node voltage. R is connection resistance.

Add adds a voltage or resistance to the Select Parameter field.

Advanced Design System 2011.01 - Using Circuit Simulators

195

Cut deletes a voltage or resistance from the Select Parameter field.

Paste copies a voltage or resistance that has been cut and places it in the
Select Parameter field.

Parameter Entry Mode Select standard or file-based data.

Optimization/Statistics/DOE Setup Opens a dialog box providing for the entry of
parameters related to optimization and statistics.

Display parameter on schematic Displays or hides a selected node on the schematic.

 NodeSetByName Fields

Following are details on the fields in the dialog box for the NodeSetByName component.

Instance Name Displays and edits the name of the component.

Select Parameter Selects a node name for editing. This name is associated with an initial
voltage V and a connection resistance R.

Add adds a node name from the Edit Node Name field to the Select Parameter
field.

Cut deletes a node name from the Select Parameter field.

Paste copies a node name that has been cut and places it in the Select
Parameter field.

Select a Node Name: Selects a node name for editing, or for adding to the Select
Parameter field.

Node Name List: Type in a node name.

Volt The initial voltage guess associated with the node name. Use this field to edit the
voltage.

Res The connection resistance associated with the node name. Use this field to edit the
resistance.

Display parameter on schematic Displays or hides a selected node name on the
schematic.

 Highlighting Nodes
Highlighting nodes can help you identify specific points in a schematic or subnetwork. To
do this, choose Simulate > Highlight Node. This opens a window that lists all nodes
(such as named connections, wires, pins, and ports) in a circuit and in all of its subcircuits.
Click a node in the list and it will be highlighted on the schematic.

Highlighting nodes can help in troubleshooting a simulation problem. If problems are
encountered at a node during simulation, the error and node name will appear in the
Simulation/Synthesis Messages window. By using the highlight node feature you can
quickly zoom in on the problem area.

 Clearing Highlights

There are two ways to clear all highlights:

In the Highlight Node window, click Clear. This clears all highlights that have been
set.
In the Schematic window, choose View > Clear Highlighting.

Advanced Design System 2011.01 - Using Circuit Simulators

196

Hint
The highlight color can be changed through Options > Preferences > Display > Highlight.

 Using Constants, Variables, and Functions
Advanced Design System contains built-in global constants, variables, and functions that
can be used in a schematic. You can use them:

With the VarEqn component
With components whose parameters can be defined using equations. (For a selected
parameter, the Equation Editor button will appear in the component editing dialog
box.)

These can simplify schematic design. For example, you can set a variable named
Frequency to a specific value, then use the variable wherever the frequency needs to be
specified in the schematic. If you want to change the frequency, you do so in one place.

For more information on how to use VarEqn, refer to the VarEqn component help.

Note
You can use the conditional statement if/then/else/endif in variable definitions and component equations.
Be sure to include the endif.

Many of the workspaces in the Examples directory use variables. One example that
includes many variable definitions plus conditional statements is NADC_PA_ in
RF_Board/NADC_PA_wrk.

Lists of constants, variables, and functions are next.

 Pre-Defined Constants

 The pre-defined built-in constants available for use in an equation are:

Constant Value Description

e 2.718 282 ... e

ln10 2.302 585 ... ln(10)

c0 2.997 924 58 e+08 m/s speed of light

e0 8.854 188 ... e-12 F/m vacuum permittivity
(1/(u0*c0*c0)

u0 1.256 637 ... e-06 H/m vacuum permeability (4*pi*1e-7)

boltzmann 1.380 658 e-23 J/K Boltzmann's constant

qelectron 1.602 177 33 e-19 C charge of an electron

planck 6.626 075 5 e-34 J*s Planck's constant

pi 3.141 593 ... pi

 Pre-Defined Variables

 The pre-defined, built-in variables for use in an equation are:

Variable Default
Value

Description

time 0 s analysis time

timestep 1 s analysis time step

freq 1 e+006 Hz analysis frequency for linear and multi-tone simulations such as Harmonic
Balance and Circuit Envelope

temp 25 C analysis temperature; set by Options Temp

tnom 25 C default nominal temperature for models; set by Options Tnom

_freq1 through
_freq12

1 e+0006
Hz

fundamental frequencies defined for multi-tone simulations such as
Harmonic Balance and Circuit Envelope

 Pre-Defined Functions

Advanced Design System 2011.01 - Using Circuit Simulators

197

 Function arguments have the following designations.

Complex Real Strings

x, y r, r0, r1, rx, ry, lower_bound,
upper_bound

s, s1, s2

In general, the functions return a complex number, unless it is a string operator as noted.
A function that returns a real value effectively has a zero value imaginary term.

Function Description

cos(x) cosine function, x is in radians

cot(x) cotangent function, x is in radians

conj(x) complex-conjugate function

cosh(x) hyperbolic cosine function

coth(x) hyperbolic cotangent function

exp(x) exponential function

imag(x) imaginary-part function

log(x) log base 10 function

ln(x) natural log function

mag(x) magnitude function

phase(x) phase (in degrees) function

phasedeg(x) phase (in degrees) function

phaserad(x) phase (in radians) function

real(x) real-part function

sin(x) sine function, x is in radians

sinh(x) hyperbolic sine function

sqrt(x) square root function

tan(x) tangent function, x is in radians

tanh(x) hyperbolic tangent function

abs(rx) absolute value function

arcsinh(rx) arcsinh function

arctan(rx) arctan function, returns radians

atan2(rx, ry) arctangent function (two real arguments), returns radians

complex(rx, ry) real-to-complex conversion function

db(rx) decibel function, 20 log10(x)

dbpolar(rx, ry) (dB,angle)-to-rectangular conversion function, rx=mag in dB, ry=angle, degrees

dbmtow(rx) convert dBm to watts

deg(rx) radian-to-degree conversion function

int(rx) convert-to-integer function

jn(r0, r1) bessel function

max(rx, ry) maximum function

min(rx, ry) minimum function

polar(rx, ry) polar-to-rectangular conversion function, rx=magnitude, ry=angle, degrees

rad(rx) degree-to-radian conversion function

sgn(rx) signum function

sinc(rx) sin(x)/x function

sprintf(...) formatted print utility; returns a string

example:
x = 2
y = 14
z = sprintf("%i.%i", x, y)
results in the string "2.14"
sprintf follows standard C programming syntax

strcat(...) string concatenation utility; returns a string

example:
s1 = "my cat"
s2 = " is frisky"
s3 = strcat(s1, s2)
results in the string "my cat is frisky"

Advanced Design System 2011.01 - Using Circuit Simulators

198

 The Effect of Expressions on Units

Due to the way that the simulator processes expressions, the following expression is
considered valid by the ADS simulator: F = 1.0 M M. This value is interpreted by the
simulator as: F = 1.0 * 1.0e6 * 1.0e6. This situation can occur when a variable is defined
with units and the variable is then used as a component parameter that also has a units
field. Although valid, such an expression usually does not specify the intended value.

The behavior of the Edit Component Parameters dialog is designed so that a parameter
value, initially specified as a number followed by a scale factor, is changed to a non-
numeric value, and the scale factor setting is automatically set to None. This scale factor
setting can be changed manually, if desired.

 Applying Measurements
Measurements are pre-defined expressions that make it easy to make common
calculations such as VSWR or signal-to-noise ratio. Measurements are available from the
simulation palettes and have two purposes:

They can be used on the schematic, in conjunction with simulations, to process the
results of a simulation.
They can be used in Data Display equations to process the results of a simulation and
display various relationships graphically.

To create your own measurement, use the MeasEqn component. For details about
measurements, refer to Simulator Expressions (expsim) and Measurement Expressions
(expmeas) documentation.

To add a measurement to a schematic:

Select a measurement from the simulation palette and place it on the schematic.
You can modify the measurement to customize it or change the name. Click the
Help button in the dialog box for details about the measurement.
You can select the measurement for output for a specific analysis. This has the
effect of restricting evaluation to that analysis only (if more exist), as well as
saving the result after each analysis iteration (e.g. each time point, or frequency
point), instead of after all iterations, thus using less memory for intermediary
data.

To view the results after running the simulation:

Open a Data Display window and select a plot and place it in the window.1.
The name of the measurement will appear in the list of variables. Select it to add it to2.
the plot and click OK.

Measurements can also be used in Data Display equations to perform additional
processing after a simulation. For information on how to use measurements in Data
Display equations, see Data Display (data).

 Quantities Measurements Can Reference

Measurements can reference:

Any simulation outputs (voltages, currents, S-parameters) from the current circuit
level and levels below using full hierarchical names (refer to Simulation Output
Names).
Other measurements and variable equations. Measurement equations and variable
equations follow the same nested scoping rules: measurement equations can
reference other measurement and variable equations at the current or higher levels.
Note that measurement and variable equations cannot share the same name (see
Naming Conventions (usrguide)).
Existing data in datasets produced by previous simulations or imported via the Data
File Tool. The full circuit path of the saved simulation output is always required. Using
the same syntax used for data displays to reference an existing dataset entry,
preface the measurement name with the dataset name.

Advanced Design System 2011.01 - Using Circuit Simulators

199

 Example

MeasEqn1 = Vout accesses node Vout in the current circuit

MeasEqn2 =
saved_dataset.DC1.DC.Vout

accesses node Vout , generated by analysis DC1 in the dataset
saved_dataset.ds

 Simulation Output Names

To successfully use measurement equations, you must understand the full names
associated with simulation outputs. Each simulation output has a unique name. A
measurement may refer to such an output by using its unique name, or a condensed
version of it. The full unique name of a simulation output is described in the following
illustration.

where:

analysis_path is a concatenated string of the full circuit names of all the simulations
driving the analysis. For example, a single top-level DC analysis called DC1 on the
design results in the analysis path DC1.DC. If a top-level sweep analysis called
Sweep1 drives that DC analysis, then the circuit path is Sweep1.DC1.DC. The .DC
suffix is specific to the DC analysis. Major suffixes are as follows:
DC .DC

AC .AC

AC noise .NC

Harmonic Balance, P2D, XDB, Envelope, LSSP .HB

Harmonic Balance noise .HB_NOISE

Transient .TRAN

circuit_path is the path of the simulation output (node voltage, current, etc.) with
respect to the circuit level of the measurement that references it. For example:
MeasEqn1 = Vout
may reference a node voltage Vout at the current level (hence no path), while
MeasEqn2 = X1.Vout
may reference a node voltage Vout in the subcircuit X1 of the current level (hence
the circuit path is X1.)
Unlike node voltages and currents, S-, Y-, Z-parameters and the corresponding
delays require no circuit path.
name is the name of the simulation output (e.g. Vout for a node voltage,
_I_Probe1.i_ for the current through current probe _I_Probe1_ , S for scattering
parameters).

The circuit path and the name are required for proper reference. The analysis path is
optional, and may be used in the case where a design contains multiple analyses to
differentiate between same-name outputs. The analysis path need not be complete. For
example, the node voltage Vout generated through the DC analysis DC1 may be
referenced by a same-level measurement as follows:

MeasEqn1 = Vout

MeasEqn2 = DC.Vout

MeasEqn3 = DC1.DC.Vout

but not MeasEqn4 = DC1.Vout

The same resolution rules used for a data display apply here to analysis outputs.

Advanced Design System 2011.01 - Using Circuit Simulators

200

 Using Simulation Templates
A number of templates are available to facilitate setting up common simulations. Copy
these to a directory where you have write permission.

To use a simulation template:

Choose Insert > Template.1.
From the dialog box that appears, select the desired simulation type and click OK.2.
Place the template in the Schematic window and modify it as required.

 Simulation Template Descriptions

Template Description

BJT_curve_tracer This simulation uses a swept current source for the base current and a swept voltage
source for the collector voltage, to simulate the DC collector current versus collector-
emitter voltage curves of a BJT.

ConvPulseRespT This simulation uses nonlinear, time-domain analysis to simulate the pulse response
of a network. The pulse response can be the reflection from a network or
transmission line or the transmission of the signal through the network or
transmission line. Also, coupling of the pulse signal from one line to another can be
simulated. If the circuit contains distributed elements, then convolution will be used
during the simulation. The reflected and transmitted signals may be shown.
Refer to the example file: examples/RF_Board/TDRcrosstalk_wrk to see this
template in use.

ConvStepRespT This simulation uses nonlinear, time-domain analysis to simulate the step response
of a network. The step response can be the reflection from a network or
transmission line or the transmission of the signal through the network or
transmission line. Also, coupling of the step signal from one line to another can be
simulated. If the circuit contains distributed elements, then convolution will be used
during the simulation. The reflected and transmitted signals may be shown.
Refer to the example file: examples/RF_Board/TDRcrosstalk_wrk to see this
template in use.

DC_BJT_T This generates the same I-V curves as the BJT_curve_tracer, except that the sources
and simulation controllers are packaged up into a subcircuit.

DC_FET_T This generates the same I-V curves as the FET_curve_tracer, except that the
sources and simulation controllers are packaged up into a subcircuit.

FET_curve_tracer This uses swept voltage sources for the gate and drain voltages, to simulate the DC
drain current versus drain-source voltage curves of a FET.

HB1Tone This simulation generates the output power, power gain, harmonic distortion, and
the output spectrum, when the test signal is a sinusoid at one power and frequency.

HB1ToneSwptFreq This simulation generates the frequency-dependent output power, power gain,
harmonic distortion, and the output spectrum, when the test signal is a sinusoid at
one power and is swept over frequency.

HB1ToneSwptPwr This simulation generates the output power, power gain, harmonic distortion, output
spectrum, and gain compression, when the test signal is a swept-power sinusoid at
one frequency.

HB2Tone This simulation generates the output power, power gain, output spectrum, and third-
and fifth-order intermodulation distortion points (input- and output-referred) when
the test signals are two sinusoids of the same power.

HB2ToneSwptPwr This simulation generates the output power, power gain, output spectrum, and third-
and fifth-order intermodulation distortion points (input- and output-referred), as well
as the intermodulation distortion levels when the test signals are two sinusoids and
their power is swept.

LinearPulseRespT This simulation uses linear, swept-frequency AC analysis to simulate the time-
domain pulse response of a network. The pulse response can be the reflection from a
network or transmission line or the transmission of the signal through the network or
transmission line. Also, coupling of the pulse signal from one line to another can be
simulated. The reflected and transmitted signals may be shown.
Refer to the example file: examples/RF_Board/TDRcrosstalk_wrk to see this
template in use.

LinearStepRespT This simulation uses linear, swept-frequency AC analysis to simulate the time-
domain step response of a network. The step response can be the reflection from a
network or transmission line or the transmission of the signal through the network or
transmission line. Also, coupling of the step signal from one line to another can be
simulated. The reflected and transmitted signals may be shown.
Refer to the example file: examples/RF_Board/TDRcrosstalk_wrk to see this
template in use.

MixConvGainNF This simulates the conversion gain and noise figure of a mixer.

MixTOI This simulates the output spectrum, output power, conversion gain, and third-order
intercept points of a mixer.

Advanced Design System 2011.01 - Using Circuit Simulators

201

S_Params This simulates the S-parameters of any two-port network, and generates Smith
chart plots for S11 and S22, and polar plots for S21 and S12. The Smith charts
include a circle of constant VSWR, whose value you may set.

S_Params_DC This simulates the S-parameters of any two-port network, and generates Smith
chart plots for S11 and S22, and polar plots for S21 and S12. The Smith charts
include a circle of constant VSWR, whose value you may set. In addition, it
generates zoomed plots of S11 and S21, over a reduced frequency range. A DC
simulation is also run.

SP_BJT_T This is a two-port vector network analyzer equivalent with biasing for a BJT. It
sweeps the base current and collector-emitter voltage, and simulates the S-
parameters of the device at each bias point, at one analysis frequency.

SP_DiffT This simulates the S-parameters of any two-port network, but the test ports are
ungrounded. This allows the simulation of differential-mode S-parameters.

SP_FET_T This is a two-port vector network analyzer equivalent with biasing for a FET. It
sweeps the gate-source and drain-source voltages, and simulates the S-parameters
of the device at each bias point, at one analysis frequency.

SP_NWA_4PortBiasLogT This simulates the S-parameters of any four-port network, but plots the data
assuming you want to compare two sets of two-port S-parameters. It generates
Smith chart plots for S11 and S33, and S22 and S44, and polar plots for S21 and
S43, and S34 and S12. The Smith chart plots show circles of constant VSWR.
It is identical to SP_NWA_4PortT, except that a log frequency sweep is used, and a
single DC bias may be set for each of the test ports.

SP_NWA_4PortBiasT This simulates the S-parameters of any four-port network, but plots the data
assuming you want to compare two sets of two-port S-parameters. It generates
Smith chart plots for S11 and S33, and S22 and S44, and polar plots for S21 and
S43, and S34 and S12. The Smith chart plots show circles of constant VSWR.
It is identical to SP_NWA_4PortT, except that a single DC bias may be set for each of
the test ports.

SP_NWA_4PortLogT This simulates the S-parameters of any four-port network, but plots the data
assuming you want to compare two sets of two-port S-parameters. It generates
Smith chart plots for S11 and S33, and S22 and S44, and polar plots for S21 and
S43, and S34 and S12. The Smith chart plots show circles of constant VSWR.
It is identical to SP_NWA_4PortT, except that a log frequency sweep is used.

SP_NWA_4PortT This simulates the S-parameters of any four-port network, but plots the data
assuming you want to compare two sets of two-port S-parameters. It generates
Smith chart plots for S11 and S33, and S22 and S44, and polar plots for S21 and
S43, and S34 and S12. The Smith chart plots show circles of constant VSWR.

SP_NWA_LogT This simulates the S-parameters of any two-port network, and generates Smith
chart plots for S11 and S22, and rectangular plots for dB(S21) and dB(S12). It is
identical to the SP_NWA_T template, except that a log frequency sweep is used.

SP_NWA_T This simulates the S-parameters of any two-port network, and generates Smith
chart plots for S11 and S22, and rectangular plots for dB(S21) and dB(S12). A two-
port vector network analyzer equivalent instrument is used. In addition, it generates
zoomed plots of S11 and S21, over a reduced frequency range. Also, plots showing
available gain and stability circles may be created.

Sparams_wNoise This simulates the S-parameters and noise figure of any two-port network, and
generates Smith chart plots for S11 and S22, and rectangular plots for dB(S21) and
dB(S12). The Smith charts include a circle of constant VSWR, whose value you may
set. In addition, it generates zoomed plots of S11 and S21, over a reduced
frequency range. Also, plots showing available gain, noise figure, and stability circles
are created.

S_ParamsLargeSignal This simulates the S-parameters of any two-port network, as a function of
frequency, and input signal power. The S-parameters are computed as the ratios of
the incident and reflected waves at the fundamental frequency. The Rollett stability
factor, K and the group delay are also computed from the S-parameters. This
template is particularly useful for computing the output reflection coefficient of a
device when it is being driven by a large input signal. Note that this template does
not use a LSSP simulation controller. Instead it uses harmonic balance combined
with small-signal mixer mode.

 Using Simulation Instrument Components
 Simulation instrument components provide a method for symbolically connecting your
circuit to an instrument. You connect your design to components that represent various
instruments and run the simulation.

The instruments are set up as curve tracers, TDRs, and network analyzers. There are two
or more of each type of instrument-each one is designed for a particular simulation or
measurement. They are located on the Component Palette, under Simulation-Instrument.
For details on each component, see Simulation Instruments (cktsiminst).

Advanced Design System 2011.01 - Using Circuit Simulators

202

To use a simulation instrument:

Create your design.1.
From the Component Palette, choose Simulation-Instrument. Select the2.
appropriate instrument and place it on your schematic.
Connect the ports of your design to the instrument connectors.3.
Set the instrument parameters.4.
Run the simulation.5.

 Performing a Momentum Cosimulation
Invoking the Circuit simulator, automatically invokes Momentum. This enables you to
cosimulate Momentum in ADS. For more information about how to create and place a
Momentum component in a schematic, see EM Simulation (em).

Advanced Design System 2011.01 - Using Circuit Simulators

203

 RefNets

RefNet is short for " reference network". A RefNet is a component that is placed in a
design that enables the port impedance from another design file in the system (the
referenced network) to be referenced as a terminating impedance for the current design
file under test. There are two typical applications for RefNets:

Inter-stage circuit analysis and design: In some design applications it is desirable to1.
simultaneously evaluate the performance of individual circuit stages terminated in
the input and output impedances of adjacent stages. For example, in transistor
matching problem, the transistor in the S-parameter test lab can be terminated in
the output impedance of the input matching network and the input impedance of
output matching network. Further, it is desired that the matching networks be
terminated looking into the appropriate side of the transistor. Simulation of these
networks simultaneously is accomplished with the S-parameter test lab, see S-
Parameter Test Labs and Sequencer (cktsim) for more information. To accomplish the
termination of an individual stage referenced to a specific port of other stages in the
design chain, the RefNet is utilized in the S-parameter test lab.
The RefNet is intended to work only for its immediately preceding or succeeding
stage with the additional requirement of that stage being in turn properly terminated.
In designs containing several stages, proper termination must be used. In a multi-
stage design where stage 1 contains the source, the 2nd stage input RefNet can point
to the stage 1 output impedance. However, the 3rd stage input RefNet cannot simply
point to the stage 2 output impedance. Instead, another design must be created
containing stages 1 and 2, and the output impedance of this design must be used.
Design specific termination: For some top level DC, AC, or S-Parameter design files,2.
it may be desired to terminate a port whose impedance is characterized by data,
from an external file (e.g. S-parameters, Z-parameters, Y-parameters) or some other
network.

There are two RefNet components that are available: RefNetTB and RefNetDesign . Both
of these components have the same functionality and are supported under DC, AC and S-
Parameter analysis, with two differences:

RefNetTB supports nested network referencing while RefNetDesign does not. See
RefNetTB Using an S-Parameter Test Lab for more information on using RefNetTB.
RefNetTB uses a test bench as the reference design while RefNetDesign uses a
standard (non-test-bench) schematic design. See RefNetDesign - File Based
Termination for more information on using RefNetDesign.

Note
 Nested referencing means that there is a top-level circuit under test that has one or more of its ports
terminated with a RefNetTB . Further, the reference test bench (specified on the top-level RefNetTB)
contains a RefNetTB , which again references other circuit designs in the system.

 Figure: RefNetTB and RefNetDesign

The parameters of RefNetTB are as follows:

Advanced Design System 2011.01 - Using Circuit Simulators

204

Parameter
Name

Description

Num The port number. This functions identically to the Num parameter found on the Term
component and power source components.

RefTestBenchName The name of the reference test bench (without the extension) that is used to calculate the
reference impedance for this termination.

RefPortNum Refers to the port number of the reference test bench. The referenced network, for
example, may contain several ports. This parameter identifies the port number (the Num
parameter) of a termination in the reference test bench.

The parameters of the RefNetDesign component are as follows:

Parameter
Name

Description

Num The port number. This functions identically to the Num parameter found on the Term
component and power source components.

RefDesignName The name of the reference design file (without the extension) that is used to calculate the
reference impedance for this termination.

RefPortNum Parameter that identifies a port number in the reference design. The reference impedance is
the impedance looking into this port of the reference design.

RefDesignZ Describes how all other ports, if any, in the referenced design are terminated. For the case
of a one-port referenced network, this parameter is not applicable and is ignored.

 Notes:

The user cannot push into a RefNet component. If the user wants to view the1.
reference design (test bench), this is accomplished by either toggling design files in
the current schematic window or opening a new schematic window and viewing the
reference design file there.
RefNet components do not support passed parameters.2.

 RefNetTB Using an S-Parameter Test Lab
To best explain this procedure, a tutorial approach will be used. The following example will
be considered:
The narrow-band amplifier is partitioned out into three subnetworks: input, device, and
output.

 Figure: Example amplifier circuit

The objective is to place each of these sub-circuits, via test benches, into an S-parameter
test lab such that the input and output ports of each subnetwork are terminated with
proper terminations, power sources with built-in resistors, or RefNet component.

Note
In the following description, Port 1 refers to the network's input port, and Port 2 refers to the network's
output port.

 Procedure

Create the input subnetwork from the Example amplifier circuit shown in the previous1.
figure, without the port 1 termination. Save the design as "input". Set up the pins
with:

Advanced Design System 2011.01 - Using Circuit Simulators

205

Pin 1 of the input network is connected to the inductor.
Pin 2 of the input network is connected to the node connecting the inductor and
capacitor.
The input subnetwork's schematic and symbol appear in the following figure.

 Figure: Input subnetwork

Also create a symbol, as shown above.

Create the active device subnetwork from the amplifier circuit shown in the figure2.
above, Example amplifier circuit. Save the design as "device". Set up the port
terminations with:

Port 1 of the device is terminated into port 2 of the input network and its port 1
termination.
Port 2 of the device is terminated into port 1 of the output network and its port
2 termination.
The active device subnetwork's schematic and symbol appear in the following
figure.

 Figure: Active device subnetwork

Advanced Design System 2011.01 - Using Circuit Simulators

206

Create the output subnetwork from the amplifier circuit shown in the figure above,3.
Example amplifier circuit. Save the design as "Output". Set up the port terminations
with:
Port 1 of the output network is terminated in the reverse chain from the device
output, the input circuit, and its 50 ohm source termination.
The output subnetwork's schematic and symbol appear in the following figure.

 Figure: Output subnetwork

Advanced Design System 2011.01 - Using Circuit Simulators

207

Create a design called, "A_TB". This will be the input testbench. Place a Term, the4.
"input" subcircuit, and a RefNetTB in it to emulate the effective configuration:

 Figure: Desired effect of test bench "A_TB"

 Figure: Test bench "A_TB" completed:

Advanced Design System 2011.01 - Using Circuit Simulators

208

Take note of the RefNetTB parameters as follows:

Num=2 Port 2 of the test bench

RefTestBenchName="B_TB" Points to the "device" test bench, which in forthcoming steps will be created
with the name, "B_TB".

RefPortNum=1 The port number of "B_TB" where the impedance is taken.

Create a design called, "B_TB". This will be the device testbench. Two RefNetTB
5.

components are placed in "B_TB" (device test bench) to emulate the effective
configuration.

 Figure: Desired effect of test bench "B_TB" with Term and RefNetTB placed

 Figure: Test bench "B_TB" completed

Take note of the RefNetTB s placed as follows:

Term1 Parameters

Num=1 Port 1 of the test bench

RefTestBenchName="A_TB" Points to the input test bench, which was created in the previous step with
the name "A_TB".

RefPortNum=2 The port number in "A_TB" where the impedance is taken.

Term2 Parameters

Num=2 Port 2 of the test bench

RefTestBenchName="C_TB" Points to the output test bench, which will be created in the next step with
the name, "C_TB".

RefPortNum=1 Port number in "C_TB" where the impedance is taken.

Create a design called, "C_TB". This will be the output testbench. Place a RefNetTB,6.
the "output" subcircuit, and a Term to emulate the effective configuration.

 Figure: Desired effect of test bench "C_TB" (output) with RefNetTB and Term placed

Advanced Design System 2011.01 - Using Circuit Simulators

209

 Figure: Test bench "C_TB" completed

Take note of the RefNetTB parameters as follows:

Num=1 Port 1 of the test bench

RefTestBenchName="B_TB" Points to the device test bench shown in the figure above, Test bench
"B_TB" completed.

RefPortNum=2 This is the port number in "B_TB" where the impedance is taken.

With test benches "A_TB", "B_TB", and "C_TB", finished, the S-parameter test lab is7.
created.

 Figure: Completed S-parameter test lab incorporating RefNetTB

There is an optional step that may be desirable. The input, device, and output, can8.
be placed into one test bench for viewing performance of the entire circuit chain.

 Figure: Test bench for entire circuit chain

Advanced Design System 2011.01 - Using Circuit Simulators

210

 Figure: S-parameter test lab incorporating sub-circuit and entire circuit, ABC_TB, test benches

 Generating a Symbol

Follow the steps below to generate a symbol:

 RefNetDesign - File Based Termination
The steps to create a file-based termination are as follows:

Create a sub-circuit that reads in data file. For this example, a one-port s-parameter1.
file is used.
Save the design file from step 1 as read_term_data .2.

 Figure: Top-level one-port design file to read in S-parameter data file

In a design file that contains the circuit under test, place RefNetDesign at the pin3.
where the S-parameter-based termination is to be applied.

Advanced Design System 2011.01 - Using Circuit Simulators

211

 Figure: Top-level design that references a file-based one-port network to realize a file-based termination

The parameters of RefNetDesign were assigned as follows:

Num=1 Port number for the top level design.

RefDesignName="read_term_data" Name of the design file for the reference network.

RefPortNum=1 Port number where the impedance is taken for the reference network.
Since the reference network is a one-port, this is set to 1.

RefDesignZ=50 For this example, this parameter is not applicable. Had port components
been placed in the reference design, this parameter instructs how those
ports are to be terminated.

Advanced Design System 2011.01 - Using Circuit Simulators

212

 S-Parameter Test Labs and Sequencer
S-parameter test labs and Sequencer both enable you to take multiple simulations and
combine them into one simulation run. An S-parameter test lab enables you to calculate
the S-parameters of multiple N-port networks in a single simulation run. A Sequencer
controller enables you to sequence multiple simulations into a single simulation run.

 An S-parameter test lab is a schematic that contains one S-parameter test lab component
and one or more test benches. A test bench is a schematic that contains an N-port
network and terminations for each port of the network. In multiple stage circuit design
practices, the designer is interested in viewing the inter-stage circuit behavior of all stages
simultaneously. In particular, it is desired for each stage to be terminated not in 50 ohms,
but in the applicable input/output impedances of adjacent stages. See RefNets (cktsim) for
more information on using RefNets in conjunction with the S-parameter test lab feature.

There are many reasons why you may want to combine test benches into sequence, using
a Sequencer controller. These include optimizing a variable across multiple simulations,
enabling complex instrument control in Ptolemy and running a series of verifications tests
on a design. To sequence these simulations, you will need to create a test bench that
includes all the desired simulation controllers and the top-level design file.

Note
For information on how to create a Test Bench refer to Creating a Test Bench.

 Comparison of Test Lab and Sequencer

Sequencer Test Lab

DC, SP, AC, HB, Tran, ENV, Ptolemy SP only

Utilizes Test Bench Controllers Utilizes Test Lab Controller

Different temps per test bench possible One simulation temp for all

Opt/Stat/ParamSwp at top level

RefNets supported

 Creating a Test Bench

Test
Bench

A test bench is simply a top-level design file that a user can run a simulation from. Since the test
bench is a top-level design, it should contain no Pin components. For simulations that are going to be
Sequenced, a test bench must contain a simulation controller. For S-parameter test labs, a simulation
controller is optional.

 Figure: Pin component

To create a test bench you should declare your schematic (to be tested) as a parametric
subnetwork. As with any parameter subnetwork, you can add parameters and set the
library location. To learn how to create a parameter subnetwork see Creating a Parametric
Subnetwork (usrguide).

Unlike parametric subnetworks, a test bench schematic should not have any Pin
components. Instead, it should be terminated with proper terminations, power sources
with built-in resistors, or RefNet component.

 Figure: Supported terminal components for S-parameter test lab

Advanced Design System 2011.01 - Using Circuit Simulators

213

From the test bench schematic window:

Choose Window > Symbol to open the symbol window.1.
From the symbol window, choose Insert > Generate Symbol... to open the Symbol2.
Generator dialog.
In the Symbol Generator dialog, you can either use the Auto-Generate tab to create a3.
default symbol, or you can use Copy/Modify to use a nicer testbench symbol:

To use this test bench symbol:

Select the Copy/Modify tab in the Symbol Generator dialog.1.
Specify the name of the symbol in the Symbol name field, as "SYM_TestBench"2.
(without the quotes).
Click OK3.

Advanced Design System 2011.01 - Using Circuit Simulators

214

 S-Parameter Test Labs

 Test Lab Usage Rules

You can refer the following guidelines while using a test lab:

As its name implies, the S-parameter test lab is dedicated to S-parameter simulation.1.
As such, a nonlinear design will be linearized about its DC operating point.
The S-parameter test lab simulation will ignore any simulation controllers contained2.
in a test bench. It is still useful to have test bench controllers because they can be
used to perform a stand-alone simulation of the test bench.
The S-parameter test lab should not contain any circuit components other than test3.
benches. Any connectivity (wires) in the S-parameter test lab is ignored. Any
component in the S-parameter test lab that has one or more pins is ignored.
The minimum requirements for an S-parameter test lab to function are:4.

At least one test bench
One S_ParamTestLab Simulation Controller

By convention, S-parameter test lab names should end in _TL . This is not required.5.
Only one S-parameter test lab simulation controller is allowed. A SweepPlan can be6.
used to specify multiple continuous or discontinuous frequency combs.
S-parameter test labs support the following auxiliary simulation controllers: Options7.
Plan, Sweep Plan, Parameter Sweep, Optimization, Statistical, and DOE controllers.
Variable equations (simulator expressions) and measurement expressions are8.
supported. As with any top-level design, variables defined at the top are recognized
throughout the hierarchy.
Tuning is supported in the S-parameter test lab. Tuning within an S-parameter test9.
lab works identically to tuning for a normal top-level design. Users can push into a
test bench and select parameters or variables to tune. Users can also tune variables
and item parameters in the schematic window that displays the S-parameter test lab.
Global nodes are supported, but they are not global across test benches. They are10.
global within each test bench.
Any global expression found in a test bench is available to all other test benches.11.
The S_ParamTestLab controller has virtually the same user interface and displayed12.
parameters as the standard S-Parameter controller.

 Configuring an S-Parameter Test Lab

To configure a S-Parameter Test Lab:

Determine the design files for which you want to calculate the S-parameters. You will1.
create a test bench for each of these designs.

Advanced Design System 2011.01 - Using Circuit Simulators

215

Create the S-Parameter Test Lab.2.
Create a new schematic. This will be the test lab. It is recommended (but not
required) that the name of the test lab schematic end in _TL . For this example,
the name My_testlab_TL is used.

 Schematic window with design named using _TL S-parameter test lab naming convention

In the S-parameter test lab schematic, change to the Simulation-S_Param
palette. Place an S_ParamTestLab controller (icon appears as SP Lab). Configure
the S-parameter test lab controller the same way you would configure a
standard S-parameter analysis.

 Test Lab S-parameter controller icon, SP Lab.

1.
In the S-parameter test lab schematic, place the test bench, My_testbench1_TB ,
created earlier. For illustration purposes, assume that test benches
My_testbench2_TB and My_testbench3_TB were also created. These are placed
into the completed test lab.

Advanced Design System 2011.01 - Using Circuit Simulators

216

 Completed S-parameter test lab

 Notes

Both the Sequencer and S-parameter test lab calculate measurement equations that1.
are contained in a test bench. The measurement equation is calculated only for the
test bench that contains it. The measurement equation should not use the test bench
instance id to refer to data (for example, S-parameters) that is generated for the test
bench.
If only one test bench is placed, the testbenchID prefix may be omitted. However,2.
this is not recommended.

 Data Display Naming Convention for Simulation Results

 Standard Results Data

 Standard S-parameter simulation output with Noise turned on produces the following
standard output to the dataset:

S, S(i,j)

PortZ, PortZ(1), PortZ(2), PortZ(n), freq

Icor, Icor(i,j)

nf, nf(i), Nfmin

Rn, Sopt, te, te(n)

Where i = 1,2,... and j = 1,2,... are port indices.

An S-parameter test lab controller will also calculate these items. However, the test bench
Instance ID will prefix the names. For example, an S-parameter test lab containing two,
two-port test benches will produce the following results:

X1.S(1,1)

X1.S(2,1)

X1.S(1,2)

X1.S(2,2)

X2.S(1,1)

X2.S(2,1)

X2.S(1,2)

X2.S(2,2)

where X1 and X2 are the test bench instance ID names appearing in the test lab. If only

Advanced Design System 2011.01 - Using Circuit Simulators

217

one test bench appears in the S-parameter test lab, then the test bench prefix is not
required.

 Measurement Equation Results Data

 Measurement equations appearing in the S-parameter test lab appear in the dataset as
follows:

MeasurementEquationName1

MeasurementEquationName2

Measurement equations appearing in test benches in an S-parameter test lab will also
appear in the dataset as follows:

MeasurementEquationName1

MeasurementEquationName2

...

However, if the same measurement equation name appears in the S-parameter test lab
and a participating test bench, the following nomenclature is used

_Testlab1_TL_sp.MeasurementEquationName1

TestBench1_TB.MeasurementEquationName1

 Optimization and Statistical Analysis

 Configuring optimization and statistical analyses in an S-parameter test lab is similar to
configuring them for a standard S-parameter analysis. An example workspace,
TestLab_HOWTO_wrk , is available in the ADS examples directory,
$HPEESOF_DIR/examples/Tutorial .

This example illustrates optimization in an S-parameter test lab. The reader is advised to
review the example's Readme file, which contains detailed information.

 Sequencer

 Creating a Sequence

 After creating a test bench, you can specify the sequence by creating a new top-level
design and instantiate each test bench in it. Next, you need to add a Sequencer controller.
This controller is available on the Simulation-Sequencing bitmap palette.

Advanced Design System 2011.01 - Using Circuit Simulators

218

Once you have instantiated the test benches and Sequencer controller, your top-level
design appears as shown in the following figure:

You are now ready to set the sequence, edit the Sequencer parameters, and add each test
bench in the desired order. When you first bring up the edit parameter box, you can see
the available test benches in the left pane.

Add each test bench by either clicking Add or double-clicking the desired test bench in the

Advanced Design System 2011.01 - Using Circuit Simulators

219

order you wish to run the test benches. This will move the selected test bench from the
available list to the sequence list in the right pane. To reorder the sequence, use Raise
and Lower located below the right pane.

Now your setup is complete and you can run the simulation.

Note
See Using Measurement Equations with a Test Lab or Sequencer for information on using Measurement
Equations with a Sequencer.

 Notes

The top-level design should not contain any components other than test benches.1.
Any connectivity (wires) are ignored. Any subnetwork in the top-level design that has
one or more pins is ignored.
Only one Sequencer controller is allowed.2.
In addition to the Sequencer controller you can use auxiliary simulation controllers:3.
Options Plan, Sweep Plan, Parameter Sweep, Optimization, Statistical, and DOE
controllers.
Variable equations (simulator expressions) and measurement expressions are4.
supported. As with any top-level design, variables defined at the top are recognized
throughout the hierarchy.
Tuning is supported.5.
Global nodes are supported, but they are not global across test benches. They are6.
global within each test bench.
Any global expression found in a test bench is available to all other test benches.7.

 Examples

For reference, a simple Ptolemy sequencer example is included in ADS. See
/examples/Tutorial/Sequencer_wrk documentation for more details. Additionally, BER
connected solutions examples are also available on Microsoft Windows.

Refer the following examples documentation located in the ADS Examples Documentation:

3GPP Uplink BER Receiver Characteristics Test
WLAN 802.11a Receiver Input Level Sensitivity Test
Simple Ptolemy Sequencer

 Usage Rules

DSP cosimulation with A/RF is not supported.1.
Test benches cannot refer to data saved in a dataset from a previous test bench. You2.
can work around this limitation on the DSP schematic. See the simple example above
for more details.
A test bench cannot contain a Sequencer or S-parameter test lab controller.3.

 Using Measurement Equations with a Test Lab or
Sequencer
 In either S-parameter Test Lab or Sequencer simulations, measurement equations are
used in the same manner as they are in a standard analysis. However, because of the
hierarchy associated with an S-parameter configuration, you need to specify the test
bench instance ID when a measurement equation at the top-level refers to data generated
for a test bench. The format is,

MeasEqnName = TestBenchInstanceID.Sij

where i=1,2,... and j=1,2,... are port indices.

Advanced Design System 2011.01 - Using Circuit Simulators

220

The examples below illustrate this concept:

Example 1: Expressing S11 from test benches X1 and X2

S11_testbenchX1 = X1.S11

S11_testbenchX2 = X2.S11

Example 2: Utilizing S21 from test benches TB1 and TB2

S21_add = TB1.S21 + TB2.S21

S21_divide = TB1.S21/TB2.S21

Example 3: Taking stability function for test benches TB1 and TB2

Stabfact_TB1=stab_fact(TB1.S)

Stabfact_TB2=stab_fact(TB2.S)

 Improving Test Lab Simulation Efficiency
 Significant time performance gains in test lab simulation can be achieved by minimizing
the number of different test benches in the ADS test lab. Using the same test bench
repeatedly can result in faster test lab simulation. To take advantage of this, you must
have a situation requiring different versions of the same circuit.

To set up a test lab for improved simulation efficiency:

In the test circuit, place variables on the component parameters that define the1.
different states.
In the test circuit, create passed parameters using the variables created in step 1.2.
Passed parameters are created by choosing File > Design Parameters and selecting
the Parameter Tab .
Create a test bench containing the test circuit you created previously.3.
In the test bench, create a set of passed parameters. Create one passed parameter4.
in the test bench for each passed parameter created in the test circuit.
Create a test lab. Make multiple placements of the test bench. With each placement,5.
assign the passed parameters such that each passed parameter set defines the state
of each circuit to be tested.

Doing this, you are effectively placing the same test bench multiple times and each
placement defines a different circuit state by the passed parameters used.

Advanced Design System 2011.01 - Using Circuit Simulators

221

 Dynamic Model Selection
Dynamic Model Selection (also called polymorphism) is how ADS determines how to model
a cell during circuit simulation.

For example, consider the cell MyFilter:

It has three circuit-simulatable cellviews:

An EM Model cellview named emModel uses EM-based S-parameters to model the
filter.
A schematic cellview named schematic uses ideal components (e.g., L, C, R) to
model the filter.
A schematic cellview named schematic-ustrip uses microstrip components (e.g.,
MLIN) to model the filter.

Dynamic Model Selection tells the circuit simulator which of these three cellviews to use
when simulating MyFilter.

Note
The layout view might also be circuit-simulatable. For more information, see Using Layout Views in Circuit
Simulation.

Dynamic Model Selection has two ways to specify which cellview to use during a circuit
simulation:

Hierarchy policies — A hierarchy policy is an ordered list of cellview names. For
each cell, the circuit simulator uses the cellview whose names appears earliest in the
list.
Instance specializations — Instance specialization specifies which cellview to use
for a particular instance of a cell.

 Hierarchy Policies
Every circuit simulation uses a hierarchy policy to determine which cellviews to use for the
simulation. The hierarchy policy is an ordered list of cellview names. Cellview names
higher in the list are preferred over cellview names lower in the list.

A simple example of a hierarchy policy is:

schematic
emModel

This hierarchy policy tells the circuit simulator that for every cell used in the simulation,

Look for a cellview named schematic. If it exists, use it as the model for the cell. If it1.
doesn’t exist, then
Look for a cellview named emModel. If it exists, use it as the model for the cell. If it2.
doesn’t exist, then

Advanced Design System 2011.01 - Using Circuit Simulators

222

Display an error message that no cellview was found for simulation of this cell.3.

As an example, consider a library with three cells:

MyAmp is an amplifier with one circuit-simulatable cellview schematic.
MyFilter is a filter with three circuit-simulatable cellviews: emModel, schematic, and
schematic-ustrip. (The layout view might also be circuit-simulatable. For more
information, see Using Layout Views in Circuit Simulation.)
MyTestbench contains the top-level schematic from which the simulation is run. The
schematic contains one instance X1 of MyFilter and one instance X2 of MyAmp as
shown in the following figure

When you run the circuit simulation from this schematic using the hierarchy policy

schematic
emModel

The circuit simulator uses:

MyFilter:schematic as the model for X1
MyAmp:schematic as the model for X2

If you move emModel to the top of the hierarchy policy such that it appears as

Advanced Design System 2011.01 - Using Circuit Simulators

223

emModel
schematic

and rerun the simulation, the circuit simulator uses:

MyFilter:emModel as the model for X1 (different than before)
MyAmp:schematic as the model for X2 (the same as before)

You can see that by switching between different hierarchy policies, you can control which
views are used to model cells.

 Default Hierarchy Policy

The default hierarchy policy is called Standard. Its ordered list of cellview names is

PLACED_LAYOUT_VIEW
schematic
emModel
layout

For information on PLACED_LAYOUT_VIEW, click here.

You can see that the default hierarchy policy prefers to model cells using a view with the
default name for schematics, schematic. Next comes the default name for EM Model
views, emModel. And finally, the default name for layout views, layout. For more
information about circuit simulation using layout views, see Using Layout Views in Circuit
Simulation.

You can change the system hierarchy policy. For information on how to change the system
hierarchy policy, see Customizing the ADS Environment (custom).

 Creating a New Hierarchy Policy

To create a new hierarchy policy:

Choose File > New > Hierarchy Policy from the ADS Main window.1.

Choose the library that will contain the new hierarchy policy.2.
Specify the name for the new hierarchy policy, and click OK.3.
The Hierarchy Policy Editor is displayed with the new hierarchy policy initialized to
be the same as the default hierarchy policy. For details on how to edit the new
hierarchy policy, see Hierarchy Policy Editor.

 Specifying the Hierarchy Policy

To specify which hierarchy policy to use:

Choose Simulate > Simulation Setup from the top-level schematic. The1.
Simulation Setup dialog box is displayed.

Advanced Design System 2011.01 - Using Circuit Simulators

224

1.

The current hierarchy policy is displayed at the bottom of the Setup tab.2.
The above graphic shows that the schematic is configured to use the hierarchy policy
named Standard (which is the default hierarchy policy).
Click Choose to view or change the current hierarchy policy. The Choose Hierarchy3.
Policy dialog box is displayed.

The above graphic shows that this schematic is using the default hierarchy policy. It
also shows that the library named DMS_lib contains two hierarchy policies,
Prefer_emModel and Prefer_schematic.
Select the name of the hierarchy policy and click OK, to use a different hierarchy4.
policy.
Hover the mouse pointer over the name of the hierarchy policy5.
or
Select a hierarchy policy and click View (if the hierarchy policy is from a read-only
library) or Edit (if it’s from a non-read-only library), to view the definition of a
hierarchy policy.

 Editing a Hierarchy Policy

There are four ways to launch the hierarchy policy editor:

Folder View: In the main ADS window, find the hierarchy policy in the Folder View
and double-click it.
or
Select the hierarchy policy and right-click to select Open.
If the hierarchy policy does not appear in the Folder View, the Folder View might not
be configured to show hierarchy policies. Right-click in the Folder View, choose Filter
View, check the Hierarchy Policy checkbox, and click OK.

Advanced Design System 2011.01 - Using Circuit Simulators

225

Library View: In the main ADS window, find the hierarchy policy in the Library View
and double-click it.
or
Select the hierarchy policy and right-click to select Open.
In the Library View, hierarchy policies appear in two places:

In the library that contains the hierarchy policy and
In the tree node named “Hierarchy Policies”.

Simulation Setup: In a schematic window, choose Simulate > Simulation Setup.
In the Simulation Setup dialog box, select the Setup tab and click Choose. In the
Choose Hierarchy Policy dialog box, select the hierarchy policy and click Edit.
Hierarchy Explorer: In a schematic window, choose Simulate > Hierarchy
Explorer. In the Hierarchy Explorer dialog box, select the hierarchy policy and
click Edit.

 Hierarchy Policy Editor

The Switch view list drop-down list at the top of the Editing Hierarchy Policies dialog
box contains all of the view names that exist in the hierarchy policy’s library.

Note
Names of view types that are never circuit simulatable (e.g., symbol views, EM Setup views) are not
shown.

You can perform the following actions in the Hierarchy Policy Editor dialog box:

To add a name to the list: Select the name from the drop-down list and click Add.
If the desired cellview name does not appear in the drop-down list, enter the name in
the box
To remove a name from the list: Select the name in the list and click Remove.
To move a name up or down in the list: Select the name in the list and drag it to
the desired position.
Honor instance specializations: Set this option to make instance specializations
take effect; otherwise, instance specializations are ignored.
This option is needed because the hierarchy policy’s ordered list of view names can
conflict with one or more instance specializations. For instance, the hierarchy policy
might choose the cellview named schematic for an instance that has been
specialized to use the cellview schematic2. This option lets you specify whether the
ordered list or the instance specialization has priority.

 Copying a Hierarchy Policy

In the ADS Main window's Folder View and Library View, select the hierarchy policy and
right-click to select Copy or Copy File to copy a hierarchy policy.

 Deleting a Hierarchy Policy

In the ADS Main window’s Folder View and Library View, select the hierarchy policy and
right-click to select Delete.
or

Advanced Design System 2011.01 - Using Circuit Simulators

226

Select the hierarchy policy and press the Delete key to delete a hierarchy policy.

If the hierarchy policy is referenced by any open library, you will be notified before the
hierarchy policy is deleted.

 Renaming a Hierarchy Policy

In the ADS Main window’s Folder View and Library View, select the hierarchy policy and
right-click to select Rename to rename a hierarchy policy.
or
Select the hierarchy policy and then click on it again (that is, two single clicks rather than
a double click) to edit its name.

When you rename a hierarchy policy, all open libraries are scanned and any references to
the old hierarchy policy name are updated to use the new name.

 Instance Specializations
Instance specialization tells the circuit simulator to use a particular cellview to model a
particular instance of a cell.

Consider a cell MyFilter that has two schematic views:

schematic uses ideal components (e.g., R, L, C) to implement the filter.
schematic-ustrip uses microstrip components to implement the filter.

By default, the circuit simulator chooses the schematic view named schematic to model
the filter. For more information, see Default Hierarchy Policy.
To use instance specialization to tell the circuit simulator to use the schematic named
schematic-ustrip:

Select the schematic that contains the instance of the filter.1.
Select the instance.2.

Click the Choose View for Simulation icon in the schematic toolbar.3.
or Choose Edit > Component > Choose View for Simulation.
or Right-click on an instance and choose Component > Choose View for
Simulation.
The Choose View for Simulation dialog box is displayed.

Advanced Design System 2011.01 - Using Circuit Simulators

227

3.

Select schematic-ustrip and then click OK. The schematic now shows that this4.
instance of MyFilter is using schematic-ustrip for circuit simulation.

If more than one instance is selected, the instance specialization applies to all
selected instances.
Select Let the Hierarchy Policy determine which view to use and click OK to5.
turn off instance specialization.
If the design hierarchy contains two (or more) instances of the same cell, you can
specialize each instance independent of the other(s).

 Hierarchy Policies versus Instance Specialization
Which approach to Dynamic Model Selection should you use?
There are three main considerations:

Scope: A hierarchy policy has global effect, that is, it applies to all cells in the design
hierarchy. Instance specialization applies only to those instances that are specialized.
Both approaches can be used at the same time: If the hierarchy policy has
“Honor instance specializations” checked, then instance specializations override the
hierarchy policy’s ordered list of cellview names. This means you can simultaneously
use hierarchy policies for global control of model selection and use instance
specializations for localized control.
Planning: To use hierarchy policies effectively, you need to create a naming
convention for your views. Instance specialization can be used immediately and does
not require any planning.

 Planning for Hierarchy Policies

To use hierarchy policies effectively, plan out what types of circuit simulatable views you
will want to switch between.

For example, you might have three different types of schematics:

Ideal (e.g., using R, L, C)

Advanced Design System 2011.01 - Using Circuit Simulators

228

Physical (e.g.,using microstrip lines)
Data-based (e.g., using S2P)

You might have two different types of EM models:

Simulate with Momentum
Simulate with FEM

Given this, you can create a naming convention for schematic views and EM Model views:

schematic for ideal schematics
schematic-phys for physical schematics
schematic-data for data-based schematics
emModel-mom for Momentum-based EM models
emModel-fem for FEM-based EM models

Given these names, you can create several hierarchy policies:

Prefer_Ideal
schematic
schematic-phys
schematic-data
emModel-mom
emModel-fem

Prefer_Physical
schematic-phys
schematic-data
emModel-mom
emModel-fem
schematic

Prefer_Mom
emModel-mom
emModel-fem
schematic-phys
schematic-data
schematic

Prefer_FEM
emModel-fem
emModel-mom
schematic-phys
schematic-data
schematic

Switch between these different hierarchy policies to control which models are used for
circuit simulation. For example, use Prefer_Ideal for a quick, less accurate simulation.
Choose Prefer_Mom or Prefer_FEM for a possibly slower, but more accurate simulation.

 Hierarchy Explorer
The Hierarchy Explorer shows you which cellviews will be used to model each instance in
the design hierarchy.
To invoke the Hierarchy Explorer, choose Simulate > Hierarchy Explorer” from the top-
level schematic.

Advanced Design System 2011.01 - Using Circuit Simulators

229

The Hierarchy Explorer lists every instance in the design hierarchy. For each instance, it
displays

The instance’s name
Which cell the item is an instance of (in lib:cell format)
Which view of that cell will be used for circuit simulation

For example, the above graphic shows that X1 is an instance of the cell MyFilter from the
library DMS_lib. It will be simulated using the schematic view named schematic.
If the view for simulation is (primitive), then this cell is a primitive (e.g., built-in to the
simulator) and does not have any simulatable cellviews to choose from.

Suppose there is a hierarchy policy name Prefer_emModel that has the ordered cellview
name list:

emModel
schematic
layout

In the Hierarchy Explorer, use the drop-down list to change the Hierarchy Policy to
Prefer_emModel. The Hierarchy Explorer changes to:

You see that with this hierarchy policy, X1 uses the EM Model view named EM Model. Also
note that since an EM Model is not a subcircuit, X1 no longer has a little plus sign in front
of it.

 Instance Specialization in the Hierarchy Explorer

To modify instance specialization from the Hierarchy Explorer, right-click an item in the
Hierarchy Explorer and choose Choose View for Simulation. The Choose View for
Simulation dialog box appears. Doing this on X1 in the above example produces:

Advanced Design System 2011.01 - Using Circuit Simulators

230

Select schematic-ustrip and click OK. The Hierarchy Explorer changes to:

The blue text indicates that X1 has been instance-specialized to use the view schematic-
ustrip.

Note
If an instance has instance specialization, but the Hierarchy Explorer does not show it as specialized, then
the hierarchy policy is not honoring instance specializations. See Hierarchy Policy Editor for more details.

 Using Layout Views in Circuit Simulation
There are two ways to use a layout in a circuit simulation.

Use an EM Model (em) view, which models the layout using S-parameters generated
by an EM simulation of the layout.
Use the layout view directly in a circuit simulation.

When a layout view is used directly by the circuit simulator, all primitive shapes (e.g.,
rectangles, polygons, circles) are modeled as ideal connections (that is, equivalent to
wires). This means that the only items in the layout that have any interesting electrical
behavior in the circuit simulation are instances of cells that are circuit simulatable. Circuit-
simulatable instances typically come from:

ADS libraries (e.g., microstrip components from the “ads_tlines” library)
Design kits
Cells that you create

Here is a simple example of a layout that is circuit simulatable:

Advanced Design System 2011.01 - Using Circuit Simulators

231

It contains three components: two MLINs and an MTAPER. These components are from the
library ads_tline” and the circuit simulator has models for them. For circuit simulation, the
above layout is equivalent to this schematic:

When the above layout is flattened (that is, converted into primitive shapes), it becomes:

This flattened layout contains three primitive shapes: two rectangles (one for each MLIN)
and a polygon (for the MTAPER). The circuit simulator has no model for primitive shapes,
so they are treated as perfect connections, shorting P1 and P2. For circuit simulation, the
flattened layout is equivalent to this schematic:

Advanced Design System 2011.01 - Using Circuit Simulators

232

You can tell the circuit simulator to use a layout view for circuit simulation using either
Hierarchy policies or Instance specializations. When using a hierarchy policy to configure
simulation from layout, the special name PLACED_LAYOUT_VIEW is quite useful.

 PLACED_LAYOUT_VIEW

On a schematic, each instance of a subcircuit is represented by a symbol view. A symbol
view is not a circuit-simulatable cellview, so the hierarchy policy is used to figure out
which circuit-simulatable cell view to use (e.g., the cellview named schematic, emData, or
layout).
In a layout view, the situation is different. In a layout, each instance of a subcircuit is not
represented by a symbol view, but by a layout view. Most of the time, you want the circuit
simulator to use that specific layout view to model the subcircuit so that the view you see
in the layout is the view used for simulation (in other words, what you see is what you
get).

The special name PLACED_LAYOUT_VIEW accomplishes this. It tells the circuit simulator
to use whichever layout view is used to represent this instance of the subcircuit,
regardless of its name.

As an example, consider a cell that represents a filter MyFilter.
Suppose MyFilter has two different layout views, layout and layout2. Perhaps layout2
uses a slightly different geometry for the filter.
There is a second cell MyDemodulator that contains an instance of MyFilter. That instance
was placed using the cellview MyFilter:layout2.
Finally, the top-level cell MyTestBench has a schematic that contains an instance of
MyDemodulator.

Advanced Design System 2011.01 - Using Circuit Simulators

233

Suppose a circuit simulation is run from MyTestBench using the default hierarchy policy

PLACED_LAYOUT_VIEW
schematic
emModel
layout

The top-level schematic contains an instance of MyDemodulator. To determine which view
to use for circuit simulation, the hierarchy policy is processed line by line:

PLACED_LAYOUT_VIEW: Is MyTestBench a layout? No, so continue to the next step.1.
schematic: Does MyDemodulator have a cellview named schematic? No, so continue2.
to the next step.
emModel: Does MyDemodulator have a cellview named emModel? No, so continue3.
to the next step.
layout: Does MyDemodulator have a cellview named layout? Yes, so use it as the4.
model for MyDemodulator.

The view MyDemodulator:layout contains an instance of MyFilter. To determine which view
to use for circuit simulation, the hierarchy policy is processed line by line:

PLACED_LAYOUT_VIEW: Is MyDemodulator:layout a layout? Yes. The placed view of1.
MyFilter is layout2, so use layout2 as the model for MyFilter.

Note that if PLACED_LAYOUT_VIEW is removed from the hierarchy policy

schematic
emModel
layout

then MyFilter:schematic is used as the model for MyFilter.

	 ADS Simulator Input Syntax
	 Setting Environment Variables
	 Codewording and Security
	 Running a Simulation from the Command Line
	 General Syntax
	 The ADS Simulator Syntax
	 Instance Statements
	 Model Statements
	 Subnetwork Definitions
	 Expression Capability
	 C-Preprocessor
	 Data Access Component
	 Reserved Names and Name Spaces

	 Parameter Sweeps and Sweep Plans
	 Conducting Sweeps
	 Basic Procedures
	 Recommendations and Tips
	 SweepPlan Controller
	 Parameter Sweep Controller

	 Using Circuit Simulators for RF System Analysis
	 Applicable Simulation Components
	 Applicable Measurements
	 Fundamentals of Using Circuit Simulators for System Analysis
	 Budget Analysis
	 Using IMT-Based Mixer Models in Spurious Signal Analysis
	 System Noise Analysis

	 Simulation Basics
	 Contents

	 The Simulation Process
	 Working with the Examples Directory

	 Using the Schematic Wizard
	 Accessing the Schematic Wizard
	 Schematic Wizard Start Page
	 Schematic Wizard Navigation
	 Creating a Circuit
	 Creating a Simulation Schematic
	 Correcting an S-Parameter Simulation Schematic
	 Correcting a Simulation Schematic with No Simulation Controller

	 Using the Smart Simulation Wizard
	 Simulation Controllers
	 Common Simulation Usage
	 Selecting Simulation Controllers
	 Using the Simulator Options Component
	 Using the Simulation Setup Dialog
	 Sweeping Parameters
	 Optimizing a Design
	 Working with Expressions
	 Running a Simulation and Controlling Simulation Data
	 Controlling a Simulation
	 Simulating from a Layout
	 Viewing DC Solutions
	 Displaying Simulation Results
	 Reusing Simulation Solutions

	 Analog/RF Simulation Computations and Convergence Criteria
	 Solving Nonlinear Algebraic Equations
	 Common Circuit Simulation Methods
	 Convergence Criteria
	 Using Continuation Methods
	 Preventing Convergence Problems

	 Working with Data Files
	 Supported Data Formats
	 Making a Data File
	 Saving a Data File
	 Using Data Files, Datasets, and Data Access Components
	 Reading and Writing Data Files
	 Examples
	 Touchstone SnP Format
	 ADS Impulse File Format
	 Discrete Format
	 Model MDIF Files
	 PDF Format
	 S2PMDIF Format
	 P2D Format
	 S2D Format
	 IMT Format
	 SPW Format
	 TIM Format
	 Generic MDIF
	 X-parameter GMDIF Format
	 CITIfile Data Format

	 Circuit Remote Simulation
	 Remote Simulation with File Access
	 ADS Remote Simulation
	 LSF Remote Simulation
	 Sun Grid Engine Remote Simulation
	 Distributed Remote Simulation

	 An ADS Simulation Example
	 Placing Circuit Sources
	 Specifying Points for Collecting Data
	 Selecting a Simulation Type
	 Selecting a Sweep Type and Plan
	 Setting Simulation Options
	 Modifying the Simulation Setup
	 Starting the Simulation
	 Displaying Simulation Data

	 MATLAB Output
	 Matlab output structure

	 Preparing a Circuit for Simulation in ADS
	 Using Current Probes
	 Naming Nodes
	 Using NodeSet and NodeSetByName Components
	 Highlighting Nodes
	 Using Constants, Variables, and Functions
	 Applying Measurements
	 Using Simulation Templates
	 Using Simulation Instrument Components
	 Performing a Momentum Cosimulation

	 RefNets
	 RefNetTB Using an S-Parameter Test Lab
	 RefNetDesign - File Based Termination

	 S-Parameter Test Labs and Sequencer
	 Creating a Test Bench
	 S-Parameter Test Labs
	 Sequencer
	 Using Measurement Equations with a Test Lab or Sequencer
	 Improving Test Lab Simulation Efficiency

	 Dynamic Model Selection
	 Hierarchy Policies
	 Instance Specializations
	 Hierarchy Policies versus Instance Specialization
	 Hierarchy Explorer
	 Using Layout Views in Circuit Simulation

